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General Relativity: A beautiful encoding of gravity in geometry. But, as a
consequence, space-time itself ends at singularities. Big Bang thought of
as the Beginning and Big Crunch the end. But general expectation: theory
is pushed beyond its domain of applicability. Must incorporate Quantum
Physics.

Idea: Retain the gravity ↔ geometry duality by encoding new physics in
Quantum Riemannian Geometry.

Goal of the talk: Because this is the ‘Cosmology day’, I will focus on the
Big Bang rather than Black hole singularities. Will argue that Physics does
not stop at the Big Bang. Quantum geometry extends its life beyond
singularities. Startling perspectives on the nature of space-time.
Phenomenology: Other talks.

Organization:
1. Historical & Conceptual Setting
2. Loop Quantum Cosmology
3. Detailed Model.

Joint work with Tomasz Pawlowski and Param Singh
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1. Conceptual and Historical Setting

• Some Long-Standing Questions expected to be answered by Quantum
Gravity from first principles:

⋆ How close to the big-bang does a smooth space-time of GR make
sense? (Onset of inflation?)
⋆ Is the Big-Bang singularity naturally resolved by quantum gravity? Or, is
a new principle/ boundary condition at the Big Bang essential?
⋆ Is the quantum evolution across the ‘singularity’ deterministic?
(Ekpyrotic universe; Pre-Big-Bang scenario)

⋆ What is on the other side? A quantum foam? Another large, classical
universe? ...

• Emerging Scenario from LQC: vast classical regions bridged
deterministically by quantum geometry. No new principle needed.

• In the classical theory, don’t need full Einstein equations in all their
complexity. Almost all work in physical cosmology based on
homogeneous isotropic models and perturbations thereon. At least in a
first step, can use the same strategy in the quantum theory: mini and
midi-superspaces.
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2. Loop Quantum Cosmology
• Spatial homogeneity and isotropy implies
⋆ Aa = c ω̊i

aσi
︸︷︷︸

fixed

, Ea = p e̊a
i σi

︸︷︷︸

fixed

– holonomy: he(c) = cos ℓc 1 + sin ℓc ėaω̊i
aσi

– |p| = a2

⋆ canonically conjugate variables:
c, p for gravity φ, pφ for matter

• Quantum theory (focus on gravity):
Key strategy: Follow full theory

⋆ States: Built from holonomies: Ψ(c) =
∑

αj eiµjc

where µj ∈ R; αj ∈ C;
∑

j |αj |2 < ∞
Hgrav = L2(R̄Bohr, dµo) 6= L2(R, dc)

• Structure mimics that of the full theory.
von Neumann uniqueness theorem by-passed.
New Quantum Mechanics

– p.



Quantum Dynamics
• Quantum Einstein’s Equation

Expand the quantum state in terms of eigenstates of geometry (i.e., p̂)
and matter fields (i.e., φ̂) :

|Ψ>=
∑

µ,φ

ψ(µ, φ)|µ, φ>

Then the Wheeler DeWitt equation is replaced by a difference equation:

C+
µ ψ(µ+ 4µo, φ) + Co

µ ψ(µ, φ) + C−
µ ψ(µ− 4µo)(φ) = γℓ2P Ĥφψ(µ, φ)

Fundamentally a constraint equation. Selects physical states. However,
can also be thought of as an ‘evolution equation’ in discrete steps 4µo

(determined by the lowest eigenvalue of the area operator).
Precise reduction to the WDW equation for large µ.

• Is the singularity resolved by quantum dynamics? A priori not obvious.
Example of Potential Danger: The evolution may stop if the coefficients C±

µ vanishes for

some µ.

Coefficients C±
µ , Co

µ such that the evolution does NOT stop! Can evolve
right through µ = 0. Singularity is resolved. IMPLICATIONS??
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Issues That Had Remained Open
(also in the Wheeler-DeWitt theory)

Is there a coherent and complete mathematical theory?

• Self-adjoint constraint? (AA, Bojowald, Willis)

• Inner product on the Hilbert space? Is HPhys separable? What are the
Dirac observables? Can you use them to construct semi-classical states?
Interpretational issues, Problem of time.

• Domain of validity of the semi-classical theory? Well controlled
approximations: Going beyond the WKB approximation.

• Other side of the Big-Bang? Quantum foam or another semi-classical
universe?

These questions now answered in detail in the simplest model using a
mixture of analytical and numerical methods. (AA, Pawlowski, Singh)
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3. A Detailed Model
To obtain detailed predictions: Simple Example: Gravity coupled to a
massless scalar field φ. Complete analytical and numerical treatment
possible. Provides a foundation for more complicated models.
Incorporation of a potential for φ and anisotropies is conceptually
straightforward.
(c, p ∼ µ;φ, pφ, subject to 1 constraint & pφ const of motion.)
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Basic Strategy

• Analytical Issues: Use φ as time ‘t’; then the quantum scalar constraint
takes the form:

∂2
t Ψ(µ, t) = −Θ Ψ(µ, t)

where Θ is a self-adjoint difference operator independent of φ:

Θ = C+
µ ĥ4µo

+ Co
µ + C−

µ ĥ−4µo

Construct the Hilbert space as in Klein-Gordon theory in static
space-time. Can construct semi-classical states. (Same structure for solutions

of the WDW Eq. Θ: Differential operator.)

• Use numerical methods to solve the Quantum Constraint. Several
subtleties. (Pawlowski’s talk)
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• Illustration of the procedure: KG example

⋆ Equation:
∂2

t Ψ(x, t) = −Θ Ψ(x, t) = ∂2
xΨ(x, t)

⋆ Ψ = ΨR + ΨL (Analog: Expanding and contracting solutions)

⋆ Positive frequency solutions:−i∂tΨ =
√

Θ Ψ

⇒ Ψ(x, t) = exp[i
√

Θ t] Ψ(x, 0).

⋆ Inner product (+ve freq solns: Non-local!)

||Ψ||2 =

∫

t=to

dx Im Ψ̄∂t Ψ =

∫

t=to

dx Ψ̄ Θ1/2 Ψ

⋆ Dirac observables:
Momentum operator p̂ = −i∂xΨ

‘Position’ operator: X̂τ Ψ = exp[i
√

Θ(t − τ)] xΨ(x, τ)

⋆ Semi-Classical states ∼ Coherent states.
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Physical Hilbert space
Consider elements Ψ(µ, φ) of Cyl⋆ which solve the constraint
∂2

φΨ(µ, φ) = −Θ Ψ(µ, φ) and are invariant under µ → −µ (i.e. do not
distinguish between right and left handed triads. HUGE space.)

• Strategy 1: Choose a lattice (graph) with µ = 4nµo + ǫ with ǫ ∈ [0, 4µo[.
Solve the quantum constraint restricted to this graph. Solutions not
normalizable in Hkin. Use KG strategy to introduce physical inner product.

In addition to semi-classical states, have to use coarse-graining to obtain classical

behavior. Disadvantage: Have to choose a specific graph. Superselection & Inequivalent

reps. in the fundamental theory. But could adopt the view that in the real world, there is a

preferred graph.

• Strategy 2: Select a (separable) sub-space of Cyl⋆phy with Ψ(φ, µ)

continuous on all real µ by exploiting the fact that eigenfunctions of the
difference operator Θ approach eigenfunctions of the differential operator
Θwdw at µ → ∞.

New possibility! Advantage: No preferred graph. No coarse graining required to recover

classical limit. Closer relation to the Hilbert space of the Wheeler-DeWitt theory. But

dynamics very different in the Planck regime.

Results for semi-classical states qualitatively same in the two strategies.
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Results

Assume that the quantum state semi-classical at late times (e.g., NOW)
and evolve backwards. Then:

• The state remains semi-classical till very early times! Till ρ ∼ ρPl. ⇒
Space-time can be taken to be classical during the inflationary era.

• In the deep Planck regime, semi-classicality fails. But quantum
evolution is well-defined through the classical singularity, and is
deterministic. No new principle needed.

• In the past of the deep Planck regime, again semi-classicality. Quantum
geometry ‘bridges’ an infinite expanding branch with an infinite contracting
branch. The universe bounces. Unlike in other approaches with bounces,
unambiguous evolution across the ‘bridge’, provided by quantum Einstein
equation.

• No unphysical matter. Notion of semi-classicality precise (∼ Coherent
States). Unlike in WKB methods, fluctuations under full control.
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Summary and Outlook

• In Loop Quantum Gravity, the interplay between geometry and physics
is elevated to quantum level. Physics does not end at classical
singularities. Many long standing questions answered in simple models.

• In closed models, ‘difficulties’ pointed out by Green and Unruh
disappear in a more complete treatment. Space-like black hole
singularities also resolved. (AA, Bojowald, Husain, Pawlowski, Singh, Varadarajan,

Winkler)

• Emerging picture: Quantum space-time significantly larger than in GR.
Vast new regions bridged by quantum geometry. Quantum evolution is
deterministic. A possible space-time resolution of the information loss
issue.
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Future Directions:

• An alternate and more natural quantization of the Hamiltonian
constraint available. µo replaced by µ̄ ∼ 1/

√
µ for large µ. Conceptually

more satisfactory and phenomenology is cleaner. Need detailed numerics
(qualitative picture will be the same in the model discussed here.)

• Inhomogeneous perturbations in cosmology. (Deterministic framework exists

but calculations yet to be undertaken.)

• Systematic derivation of quantum cosmology from full loop quantum
gravity. (Brunneman, Engle talks)

• Black hole singularities resulting from a full blown gravitational collapse
in 4-dimensions.
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