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Content

• Diffeomorphism-invariant Quantization of string moving in
d-dimensional flat background. No need for critical dimension.

• Inequivalence to Fock space methods

• Purely algebraic approach – representations?
(work in progress)
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Introduction

String action
∫
Σ
dvol(Σ), i.e. area of the worldsheet swept out by string moving in

background (here: Md). Hence: purely geometric object (in Riemannian background:
solutions to Euler-Lagrange equations are minimal surfaces).

Canonical formalism: Hcan = 0 and (primary) constraints

x′ · p ≈ 0 1
2 (p2 + x′

2) ≈ 0

xµ : Γ → Md parametrization, (τ, σ) 7→ xµ(τ, σ) , τ ∈ R+, σ ∈ [0, 2π), ′ derivative
∂σ in spacelike direction (x′2 ≤ 0), pµ canonical momentum, · Lorentz-product.

Constraints first class w.r.t. canonical Poisson bracket. Infinitesimal generators of
reparametrizations.

Extended Hamiltonian linear combination of constraints

 String: gauge system, 2-D-diffeomorphisms as gauge group. Toy model!

fix gauge ≡ fix parametrization (e.g. choose conformal coordinates).
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Fock space

Fourier decomposition of xµ and pµ

 decomposition of constraints. Fourier modes Lclass
n are (infinite) sums of

polynomials quadratic in Fourier modes of x and p.
Poisson bracket  Witt algebra

Quantization: negative Fourier modes → creation op’s
positive Fourier modes → annihilation op’s
Poisson bracket → 1

i~ [ · , · ]
polynomial in Fourier modes → normal order

Witt algebra → central extension: Virasoro algebra

[Ln, Lm] = (m− n) Ln+m +
d

12
(n3 − n) δn,−m

central charge
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Physical subspace defined by Ln|ψ〉 = 0, n ≥ 0.

Works only in critical dimension d = 26 (needed for positive norm, closure of
Lorentz algebra in light cone gauge etc...).

Enormous output, predictions etc. (e.g. massless spin 2 particle).

Problem: splitting in positive/negative Fourier modes not invariant under change
of parametrization (though Fock spaces equivalent).

Are harmonic oscillators suitable? Recall Lüscher, Symanzik, Weisz 1980: Euclidean
Green’s function for loop equation in WKB approximation contains anharmonic
terms.

Is there another way to treat diffeomorphism invariance of string theory?
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The Invariant Charges

Pohlmeyer 1982: bosonic string = integrable system.

Via associated system of linear equations and associated monodromy:
construction of an infinite set of

diffeomorphism invariant functionals on the worldsheet
(invarariant charges)

Pohlmeyer+Rehren 1988: completeness, i.e. reconstruction of worldsheet (geome-
try!) from knowledge of invariant charges possible (up to rigid translations in
direction of total momentum).
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Invariant charges (closed string)

Z±µ1...µN
=

σ+2π∫
σ

dσ1

∫
σ1≤σ2<···<σN≤σ1+2π

· · ·
∫
dσ2 · · · dσN u±µ1

(τ, σ1) · · ·u±µN
(τ, σN)

auxiliary variables: right/left movers u±µ = pµ ± x′µ.

• Invariance: Poisson-commute (strongly!) with constraints.

• No gauge fixing required in definition.

• Examples: Pµ =
∮
dσu±µ (τ, σ) =

∮
dσpµ(τ, σ), Pauli-Lubanski vector... higher

orders (large N) no such simple interpretation – recall completeness!

• Form a Poisson algebra (i.e. close under Poisson bracket and multiplication).
Right and Left mover part commute with each other. Pµ are central.

• Covariance under proper orthochronous Lorentz transform.
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The Poisson Algebra Invariant Charges

• graded, h =
⊕∞

l=0 hl. Dimension of each stratum hl (as vectorspace) finite

(depends on d and l). Physical unit of elements of hl: actionl+1.

{hl1, hl2} ⊂ hl1+l2 , hl1 · hl2 ⊂ hl1+l2+1

• Technical problem: algebraic dependences between invariant charges, i.e. certain
linear combinations of (multiple) Poisson brackets and products are 0 (relations).

• Number of independent (generating) relations in each stratum is known (depends
on d). Explicit form also depends on d.

• Aim: presentation of h in terms of generators and relations.

• Relations calculated explicitly in lower strata (< 10) for d = 3, 4, massive and
massless case (P2 > 0 and P2 = 0)

[Pohlmeyer, Rehren, Happle, Schneider ....]
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Invariant Quantization

• 1-1 correspondence classical ↔ quantum generators

• Graded algebra h → filtered algebra ĥ (allow for quantum corrections). Physical
unit of elements of level ĥl (l from 0 to ∞) is ~l+1.

• Relations: Poisson brackets → commutators, multiplication noncommutative.

Admit quantum corrections, i.e. (commutators and products of) elements of
lower strata, multiplied with appropriate powers of ~ and some at this stage free
complex parameters → quantum relations

• Quantum corrections (possibly uniquely) fixed by structural similarity conditions
(e.g. number of independent relations should remain unchanged)

have been computed explicitly in lower strata (massive string, d = 3, 4)

• Calculation of quantum corrections = consistency check of programme. Since
works stratum by stratum, no general proof.
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Breakthrough:

Classical h again: (infinite) set of functionals Rt
µ1···µN

on worldsheet with only
linear dependences: not themselves invariant under reparametrizations, but invariant
charges are polynomials in Rt

µ1···µN
’s.

Multiplicative and Poisson structure of h reproduced.

Meusburger+Rehren 02: quantize Poisson algebra of Rt
µ1···µN

’s  consistent
quantization of h (to all orders) fulfilling structural similarity conditions.

⇒ there is a consistent quantization: no critical dimension!

Explicitly computed quantum corrections for massive string in d = 4 are reproduced.
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Quantization on Fock space?

Classically: Fourier decomposition of u±  Z± infinite sums of polynomials of
arbitrarily high degree in Fourier modes αn

µ, βn
µ

Z+
µ1...µN

=
∞∑

n1=−∞
· · ·

∞∑
nN=−∞

αn1
µ1
· · ·αnN

µN
C(N)

n1,...,nN

Classical Poisson structure reproduced. In particular, generating relations ok
√

Quantization:

annihilation/ creation op’s. Normal order  : Z±µ1...µN
:

[DB, JMP 04]
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Relations?

In classical relation: Poissonbrackets → commutators. Insert : Z±µ1...µN
:

Evaluate commutators by application of derivation rule, bring result into normal
order → correction terms.

In d = 4 already in second stratum: correction terms do not correspond to invariant
charges (anomalies). Typical term:

∑
n>0

1
n α−n

i αn
i

Non-invariance: take classical counterpart (α Fourier modes). Then

• direct proof: even Möbius transform does not leave this invariant.
• alternative: term does not Poisson commute with classical constraints.

Generating quantum relations not reproduced (d = 4)!

Not even on physical subspace: anomalies do not annihilate physical vectors.
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Independence of dimension d?

Slight chance: generating relations in d = 26? (admit suitable non-invariant quan-
tum corrections in quantized invariants?). Tedious to calculate even classical
relations (future project). However:

• Generating relations from d = 4 remain true as classical identities in arbitrary
dimension d ⇒ anomalies appearing after naive quantization on Fock space still
mean: algebra does not close!

For simple commutators proved: change of ordering prescription does not help.

• Moreover, [Ln, : Z±µ1...µN
:] 6= 0 even on physical subspace and for any dimensi-

on d. Again, rhs not in the algebra.

Mechanism similar to [Mi−,Mj−] in lightcone gauge. But: no simple solution
(e.g. d = 26), since Z not only quadratic in α!
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Representations

• Thiemann 2004: an invariant quantization of invariant charges via representation
using diff-invariant LQG state (does not reproduce quantum relations). No
critical dimension!

• Schreiber 2004: classical Poisson algebra of invariant charges in terms of
DDF operators. Quantization? (problem, in particular, with restoring Poin-
caré-invariance).

• Finite dimensional representations (not faithful): only a limited number of
generators represented nontrivially

VERY promising!!!
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Outlook

• Continue working on (finite) representations (long term goal: find full represen-
tation of quantum algebra ĥ with constraint operators as Casimirs).

• Scattering: encoded in algebraic relations between algebras of the respective
three legs – analyze using (finite) representations

Future:

• Backgrounds other than Md? (cp. Beisert, Staudacher et al)
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