The Invariant Charges of the Nambu-Goto String

Dorothea Bahns

Universität Hamburg

Loops 05

Golm, 10 October 2005

Content

- Diffeomorphism-invariant Quantization of string moving in *d*-dimensional flat background. No need for critical dimension.
- Inequivalence to Fock space methods
- Purely algebraic approach representations? (work in progress)

Introduction

String action $\int_{\Sigma} dvol(\Sigma)$, i.e. area of the worldsheet swept out by string moving in background (here: \mathbb{M}^d). Hence: purely geometric object (in Riemannian background: solutions to Euler-Lagrange equations are minimal surfaces).

Canonical formalism: $H_{can} = 0$ and (primary) constraints

$$x' \cdot p \approx 0$$
 $\frac{1}{2}(p^2 + {x'}^2) \approx 0$

 $x^{\mu}: \Gamma \to \mathbb{M}^d$ parametrization, $(\tau, \sigma) \mapsto x^{\mu}(\tau, \sigma)$, $\tau \in \mathbb{R}_+$, $\sigma \in [0, 2\pi)$, ' derivative ∂_{σ} in spacelike direction ($x'^2 \leq 0$), p^{μ} canonical momentum, · Lorentz-product.

Constraints first class w.r.t. canonical Poisson bracket. Infinitesimal generators of reparametrizations.

Extended Hamiltonian linear combination of constraints

→ String: gauge system, 2-D-diffeomorphisms as gauge group. Toy model!

fix gauge \equiv fix parametrization (e.g. choose conformal coordinates).

Fock space

Fourier decomposition of x^{μ} and p^{μ}

 \rightsquigarrow decomposition of constraints. Fourier modes L_n^{class} are (infinite) sums of polynomials quadratic in Fourier modes of x and p. Poisson bracket \rightsquigarrow Witt algebra

Quantization:	negative Fourier modes	\rightarrow	creation op's
	positive Fourier modes	\rightarrow	annihilation op's
	Poisson bracket	\rightarrow	$rac{1}{i\hbar} \left[\;\cdot\;,\;\cdot\; ight]$
	polynomial in Fourier modes	\rightarrow	normal order

Witt algebra \rightarrow central extension: Virasoro algebra

$$[L_n, L_m] = (m-n) \ L_{n+m} + \frac{d}{12}(n^3 - n) \ \delta_{n, -m}$$

central charge

Physical subspace defined by $L_n |\psi\rangle = 0$, $n \ge 0$.

Works only in critical dimension d = 26 (needed for positive norm, closure of Lorentz algebra in light cone gauge etc...).

Enormous output, predictions etc. (e.g. massless spin 2 particle).

Problem: splitting in positive/negative Fourier modes not invariant under change of parametrization (though Fock spaces equivalent).

Are harmonic oscillators suitable? Recall Lüscher, Symanzik, Weisz 1980: Euclidean Green's function for loop equation in WKB approximation contains anharmonic terms.

Is there another way to treat diffeomorphism invariance of string theory?

The Invariant Charges

Pohlmeyer 1982: bosonic string = integrable system.

Via associated system of linear equations and associated monodromy: construction of an infinite set of

diffeomorphism invariant functionals on the worldsheet (invarariant charges)

Pohlmeyer+Rehren 1988: completeness, i.e. reconstruction of worldsheet (geometry!) from knowledge of invariant charges possible (up to rigid translations in direction of total momentum). Invariant charges (closed string)

$$\mathcal{Z}_{\mu_1\dots\mu_N}^{\pm} = \int_{\sigma}^{\sigma+2\pi} d\sigma_1 \int_{\sigma_1 \le \sigma_2 < \dots < \sigma_N \le \sigma_1 + 2\pi} d\sigma_2 \cdots d\sigma_N \ u_{\mu_1}^{\pm}(\tau,\sigma_1) \cdots u_{\mu_N}^{\pm}(\tau,\sigma_N)$$

auxiliary variables: right/left movers $u^{\pm}_{\mu} = p_{\mu} \pm x'_{\mu}$.

- Invariance: Poisson-commute (strongly!) with constraints.
- No gauge fixing required in definition.
- Examples: $\mathcal{P}_{\mu} = \oint d\sigma u_{\mu}^{\pm}(\tau, \sigma) = \oint d\sigma p_{\mu}(\tau, \sigma)$, Pauli-Lubanski vector... higher orders (large N) no such simple interpretation recall completeness!
- Form a Poisson algebra (i.e. close under Poisson bracket and multiplication). Right and Left mover part commute with each other. \mathcal{P}_{μ} are central.
- Covariance under proper orthochronous Lorentz transform.

The Poisson Algebra Invariant Charges

• graded, $\mathfrak{h} = \bigoplus_{l=0}^{\infty} \mathfrak{h}^l$. Dimension of each stratum \mathfrak{h}^l (as vectorspace) finite (depends on d and l). Physical unit of elements of \mathfrak{h}^l : action^{l+1}.

$$\{\mathfrak{h}^{l_1},\mathfrak{h}^{l_2}\}\subset \mathfrak{h}^{l_1+l_2}\;,\qquad \mathfrak{h}^{l_1}\cdot\mathfrak{h}^{l_2}\subset \mathfrak{h}^{l_1+l_2+1}$$

- Technical problem: algebraic dependences between invariant charges, i.e. certain linear combinations of (multiple) Poisson brackets and products are 0 (relations).
- Number of independent (generating) relations in each stratum is known (depends on *d*). Explicit form also depends on *d*.
- Aim: presentation of \mathfrak{h} in terms of generators and relations.
- Relations calculated explicitly in lower strata (< 10) for d = 3, 4, massive and massless case ($\mathcal{P}^2 > 0$ and $\mathcal{P}^2 = 0$)

[Pohlmeyer, Rehren, Happle, Schneider]

Invariant Quantization

- 1-1 correspondence classical \leftrightarrow quantum generators
- Graded algebra $\mathfrak{h} \to \mathfrak{f}$ iltered algebra $\hat{\mathfrak{h}}$ (allow for quantum corrections). Physical unit of elements of level $\hat{\mathfrak{h}}^l$ (l from 0 to ∞) is \hbar^{l+1} .
- Relations: Poisson brackets → commutators, multiplication noncommutative.
 Admit quantum corrections, i.e. (commutators and products of) elements of lower strata, multiplied with appropriate powers of ħ and some at this stage free complex parameters → quantum relations
- Quantum corrections (possibly uniquely) fixed by structural similarity conditions (e.g. number of independent relations should remain unchanged) have been computed explicitly in lower strata (massive string, d = 3, 4)
- Calculation of quantum corrections = consistency check of programme. Since works stratum by stratum, no general proof.

Breakthrough:

Classical \mathfrak{h} again: (infinite) set of functionals $\mathcal{R}^t_{\mu_1\cdots\mu_N}$ on worldsheet with only *linear* dependences: not themselves invariant under reparametrizations, but invariant charges are polynomials in $\mathcal{R}^t_{\mu_1\cdots\mu_N}$'s.

Multiplicative and Poisson structure of \mathfrak{h} reproduced.

Meusburger+Rehren 02: quantize Poisson algebra of $\mathcal{R}^t_{\mu_1\cdots\mu_N}$'s \rightsquigarrow consistent quantization of \mathfrak{h} (to all orders) fulfilling structural similarity conditions.

 \Rightarrow there is a consistent quantization: no critical dimension!

Explicitly computed quantum corrections for massive string in d = 4 are reproduced.

Quantization on Fock space?

Classically: Fourier decomposition of $u^{\pm} \rightsquigarrow \mathcal{Z}^{\pm}$ infinite sums of polynomials of arbitrarily high degree in Fourier modes α_{μ}^{n} , β_{μ}^{n}

$$\mathcal{Z}^+_{\mu_1\dots\mu_N} = \sum_{n_1=-\infty}^{\infty} \cdots \sum_{n_N=-\infty}^{\infty} \alpha^{n_1}_{\mu_1} \cdots \alpha^{n_N}_{\mu_N} C^{(N)}_{n_1,\dots,n_N}$$

Classical Poisson structure reproduced. In particular, generating relations ok $\sqrt{}$

Quantization:

annihilation/ creation op's. Normal order $\rightsquigarrow : \mathcal{Z}^{\pm}_{\mu_1...\mu_N} :$

[DB, JMP 04]

Relations?

In classical relation: Poissonbrackets \rightarrow commutators. Insert : $\mathcal{Z}_{\mu_1...\mu_N}^{\pm}$:

Evaluate commutators by application of derivation rule, bring result into normal order \rightarrow correction terms.

In d = 4 already in second stratum: correction terms do not correspond to invariant charges (anomalies). Typical term: $\sum_{n>0} \frac{1}{n} \alpha_i^{-n} \alpha_i^n$

<u>Non-invariance</u>: take classical counterpart (α Fourier modes). Then

- direct proof: even Möbius transform does not leave this invariant.
- alternative: term does not Poisson commute with classical constraints.

Generating quantum relations not reproduced (d = 4)!

Not even on physical subspace: anomalies do not annihilate physical vectors.

Independence of dimension *d***?**

Slight chance: generating relations in d = 26? (admit suitable non-invariant quantum corrections in quantized invariants?). Tedious to calculate even classical relations (future project). However:

Generating relations from d = 4 remain true as *classical identities* in arbitrary dimension d ⇒ anomalies appearing after naive quantization on Fock space still mean: algebra does not close!

For simple commutators proved: change of ordering prescription does not help.

• Moreover, $[L^n, : \mathcal{Z}^{\pm}_{\mu_1 \dots \mu_N} :] \neq 0$ even on physical subspace and for any dimension d. Again, rhs not in the algebra.

Mechanism similar to $[M_{i-}, M_{j-}]$ in lightcone gauge. But: no simple solution (e.g. d = 26), since \mathcal{Z} not only quadratic in α !

Representations

- Thiemann 2004: an invariant quantization of invariant charges via representation using diff-invariant LQG state (does not reproduce quantum relations). No critical dimension!
- Schreiber 2004: *classical* Poisson algebra of invariant charges in terms of DDF operators. Quantization? (problem, in particular, with restoring Poincaré-invariance).
- Finite dimensional representations (not faithful): only a limited number of generators represented nontrivially

VERY promising!!!

Outlook

- Continue working on (finite) representations (long term goal: find full representation of quantum algebra $\hat{\mathfrak{h}}$ with constraint operators as Casimirs).
- Scattering: encoded in algebraic relations between algebras of the respective three legs analyze using (finite) representations

Future:

• Backgrounds other than \mathbb{M}^d ? (cp. Beisert, Staudacher et al)