Perimeter Institute for Theoretical Physics, Waterloo, Ontario, Canada

Singularities in Loop Quantum Gravity:

A Status Report

Johannes Brunnemann

T. Thiemann, J.B. gr-qc/0505032, gr-qc/0505033 LOOPS'05 @ AEI

Max Planck Institut für Gravitationsphysik, Golm near Potsdam, Germany

Golm, 14/10/2005

Outline

■ Singularities in GR: A General Concept
 → Cosmological Models-FRW

• LQG-Elements \leftrightarrow LQC-Elements

 \rightarrow General Structures \rightarrow Results of Symmetry Reduction

Calculation in Full LQG

 \rightarrow Inverse Scale Factor at gauge invariant 3-vertex (SU(2))

 \rightarrow CS-Expectation-Value at *M*-vertex (*U*(1)³)

Current Investigations

Motivation: Singularity Theorems

• Very general statements, robust wrt. possible symmetry reductions

provide criteria when $(\mathcal{M}, g_{\mu\nu})$ contains at least 1 incomplete timelike or 0-geodesic (within finite proper time τ_c the geodesic can't be extended)

- \Rightarrow Classification:
 - (i) Scalar from $R_{\alpha\beta\gamma}{}^{\delta}$ blows up
 - (ii) Component of $R_{\alpha\beta\gamma}{}^{\delta}$ in parallelly propagated tetrad blows up
 - (iii) No such scalar or component blows up

Cosmology: Simplest Example FRW

Demand: Spatial homogeneity, isotropy

 $P \dots$ matter pressure

 \rightarrow that gives a natural 3 + 1 split of $(\mathcal{M}, g_{\mu\nu})$ and fixes the form of metric and line element

$$ds^{2} = -d\tau^{2} + a^{2}(\tau) \left[\frac{dr^{2}}{1 - kr^{2}} + r^{2} \left(d\Theta^{2} + \sin^{2} \Theta d\phi^{2} \right) \right]$$

origin: contraction of space to 0, $\rho, R \to \infty$ $R = 6\left(\frac{\ddot{a}}{a} + \frac{\dot{a}^2}{a^2}\right)$ for P=0 (dust)

Cosmology: Scalar field (Inflaton)

• Hamiltonian for FRW with homogeneous, isotropic scalar field ϕ

$$H_{kin}(N) = \int_{\sigma} d^3x \ N\left[\frac{\pi^2}{2a^3} + a^3V(\phi)\right]$$

▶ $\lim_{\tau \to 0} a(\tau)$: singularity prominent in the first term

• (General) Hamiltonian for scalar field ϕ in 3+1 split

$$H_{kin}(N) = \int_{\sigma} d^3x \ N \left[\underbrace{\frac{\pi^2}{\sqrt{\det q}}}_{\propto a^{-3}} + \underbrace{\sqrt{\det q}}_{\propto a^3} \left(q^{ab} \phi_{,a} \phi_{,b} + V(\phi) \right) \right]$$

- \blacktriangleright homogeneous \rightsquigarrow derivative term drops out
- ▶ $\lim_{\tau \to 0} a(\tau)$: singularity prominent in the first term

Cosmology: Scalar field (Inflaton)

• Hamiltonian for FRW with homogeneous, isotropic scalar field ϕ

$$H_{kin}(N) = \int_{\sigma} d^3x \ N\left[\frac{\pi^2}{2a^3} + a^3V(\phi)\right]$$

▶ $\lim_{\tau \to 0} a(\tau)$: singularity prominent in the first term

• (General) Hamiltonian for scalar field ϕ in 3+1 split

$$H_{kin}(N) = \int_{\sigma} d^3x \ N \left[\underbrace{\frac{\pi^2}{\sqrt{\det q}}}_{\propto a^{-3}} + \underbrace{\sqrt{\det q}}_{\propto a^3} \left(q^{ab} \phi_{,a} \phi_{,b} + V(\phi) \right) \right]$$

 \blacktriangleright homogeneous \rightsquigarrow derivative term drops out

▶ $\lim_{\tau \to 0} a(\tau)$: singularity prominent in the first term

Can be promoted to bounded operator in LQC. What about LQG?

$LQG \Leftrightarrow LQC: Comparison$

	LQG	LQC
Similar	Quantization methods	
	Poisson-Identity	
Different	m QFT	minisuperspace
	$T_{\gamma \vec{j} \vec{I}}$ (non abelean, arbitrary γ)	T_r (effectively abelean, fixed γ)
	discrete volume spectrum	continuous volume spectrum
	highly degenerated 0-eigenvalues	single 0-eigenvalue
	\hat{C}_{LQG} modifies graph	\hat{C}_{LQC} leaves graph invariant
	\hat{C}_{LQG} bounded ?	\hat{C}_{LQC} bounded on 0-volume states
		(contrary to classical behaviour!)

$$\hat{C}_{LQC} = -\alpha q^2 \sqrt{|p|} + b \frac{\pi^2}{\sqrt{|p|}^3} + \sqrt{|p|}^3 V(\phi)$$

$$\hat{C}_{LQG} = \frac{\left[\epsilon_{jkl} \left[(1+\beta^2)\epsilon_{jmn} K_a^m K_b^n \right] E_k^a E_l^b \right]}{\sqrt{|\det E|}} + \frac{1}{2} \left[\frac{\pi^2}{\sqrt{|\det E|}} + \frac{E_j^a E_j^b}{\sqrt{|\det E|}} \phi_{,a} \phi_{,b} + \sqrt{|\det E|} V(\phi) \right]$$

Need to understand the relations between LQG and LQC!

Validity of Assumptions:

? Under which circumstances a given symmetry reduction can be applied without fading away characteristic properties of the theory?

Validity of Assumptions:

? Under which circumstances a given symmetry reduction can be applied without fading away characteristic properties of the theory?

■ 'Backreaction'

? Is it possible that within the reduced dynamics a regime is reached in which the original assumptions justifying the symmetry reduction are violated?

Validity of Assumptions:

? Under which circumstances a given symmetry reduction can be applied without fading away characteristic properties of the theory?

■ 'Backreaction'

? Is it possible that within the reduced dynamics a regime is reached in which the original assumptions justifying the symmetry reduction are violated?

• 'Problem or Feature'

? When applying a symmetry reduction life simplifies a lot. E.g. the valence of vertices is fixed, the theory becomes effectively abelian, as a result operators as (inverse) volume are simplified. Do certain properties result from symmetry reduction or do they still mirror physical properties of the particular model?

Kinematical Term of Scalar Field in Hamilton Constraint Operator

•
$$C_{kin}^{scalar}(N) = \int_{\sigma} d^3x \ N\left[\frac{\pi^2}{\sqrt{\det q}}\right] = \int_{\sigma} d^3x \ N\pi^2\left[\frac{\left[\det(e)\right]^2}{\left[\det q\right]\frac{3}{2}}\right]$$

 \rightarrow singularity prominent in this term

• According operator in Full LQG

$$\hat{C}_{kin}^{scalar}(N) \ T_{\gamma \vec{j} \vec{I} \vec{n}} = \sum_{v \in V(\gamma)} N(v) \ \hat{H}_{kin}^{(grav)} \ T_{\gamma \vec{j} I} \otimes \hat{H}_{kin}^{(matter)} \ T_{v(\gamma) \vec{n}}$$

$$= \sum_{v \in V(\gamma)} N(v) \left[\widehat{\frac{1}{\sqrt{\det q}}(v)} \right] T_{\gamma \vec{j} I} \otimes \hat{\pi}^2 \qquad \hat{\pi}^2 \qquad T_{v(\gamma) \vec{n}}$$

• where

$$\hat{H}_{kin,v}^{(grav)} = \left[\frac{1}{\hbar^3 \kappa^3} \frac{1}{E(v)} \sum_{IJK} \epsilon(IJK) \ \epsilon^{IJK} \ \epsilon_{ijk} \ \left(\frac{1}{2}\right) \hat{e}_I^i(v) \ \left(\frac{1}{2}\right) \hat{e}_J^j(v) \ \left(\frac{1}{2}\right) \hat{e}_K^k(v)\right]^2$$

$$\hat{H}_{kin,v}^{(matter)} = \left[\hbar\kappa X(v)\right]^2 \qquad \qquad \left[\hat{h}\kappa X(v) \right]^2 \qquad \qquad \left[\hat{h}\kappa X(v) \right]^2 = \operatorname{Tr}\left[\tau_k h_K \left[h_K^{-1} , \hat{V}_v^r \right] \right]$$

Action on 3-valent (Gauge Invariant) States: Setup

$$\| \hat{H}_{kin,v}^{(grav)} \| = const \cdot \frac{32}{9(1+2j_1)^2(1+2j_2)^2(1+2j_3)^2} \\ \times \left[108 A_1 A_2 A_3 \\ -3 \left(2(-1)^{2j_1} + (-1)^{2j_3} \right)^2 A_2 (A_1 - A_2 + A_3)^2 \\ -3 \left(2(-1)^{2j_2} + (-1)^{2j_3} \right)^2 A_1 (-A_1 + A_2 + A_3)^2 \\ -3 \left(1+2(-1)^{2(j_1+j_2)} \right)^2 A_3 (A_1 + A_2 - A_3)^2 \\ - \left(1+2(-1)^{2(j_1+j_2)} \right) \left(2(-1)^{2j_1} + (-1)^{2j_3} \right) \left(2(-1)^{2j_2} + (-1)^{2j_3} \right) \\ \times \left(-A_1 + A_2 + A_3 \right) (A_1 - A_2 + A_3) (A_1 + A_2 - A_3) \right] \\ \times \left(V_{1A}^{\frac{1}{4}} - V_{1B}^{\frac{1}{4}} \right)^2 \left(V_{2A}^{\frac{1}{4}} - V_{2B}^{\frac{1}{4}} \right)^2 \left(V_{3A}^{\frac{1}{4}} - V_{3B}^{\frac{1}{4}} \right)^2$$

$$\| \hat{H}_{kin,v}^{(grav)} \| = const \cdot \frac{32}{9(1+2j_1)^2(1+2j_2)^2(1+2j_3)^2} \\ \times \left[108 A_1 A_2 A_3 \\ -3 \left(2(-1)^{2j_1} + (-1)^{2j_3} \right)^2 A_2 (A_1 - A_2 + A_3)^2 \\ -3 \left(2(-1)^{2j_2} + (-1)^{2j_3} \right)^2 A_1 (-A_1 + A_2 + A_3)^2 \\ -3 \left(1+2(-1)^{2(j_1+j_2)} \right)^2 A_3 (A_1 + A_2 - A_3)^2 \\ - \left(1+2(-1)^{2(j_1+j_2)} \right) \left(2(-1)^{2j_1} + (-1)^{2j_3} \right) \left(2(-1)^{2j_2} + (-1)^{2j_3} \right) \\ \times \left(-A_1 + A_2 + A_3 \right) (A_1 - A_2 + A_3) (A_1 + A_2 - A_3) \right] \\ \times \left(V_{1A}^{\frac{1}{4}} - V_{1B}^{\frac{1}{4}} \right)^2 \left(V_{2A}^{\frac{1}{4}} - V_{2B}^{\frac{1}{4}} \right)^2 \left(V_{3A}^{\frac{1}{4}} - V_{3B}^{\frac{1}{4}} \right)^2$$

NOT bounded!

Action on 3-valent (Gauge Invariant) States: Result

Here

$$V_{1A} = \left[(-j_1 + j_2 + j_3 + 1)(j_1 - j_2 + j_3)(j_1 + j_2 - j_3)(j_1 + j_2 + j_3 + 1) \right]^{\frac{1}{2}}$$

$$V_{1B} = \left[(-j_1 + j_2 + j_3)(j_1 - j_2 + j_3 + 1)(j_1 + j_2 - j_3 + 1)(j_1 + j_2 + j_3 + 2) \right]^{\frac{1}{2}}$$

$$V_{2A} = \left[(-j_1 + j_2 + j_3)(j_1 - j_2 + j_3 + 1)(j_1 + j_2 - j_3)(j_1 + j_2 + j_3 + 1) \right]^{\frac{1}{2}}$$

$$V_{2B} = \left[(-j_1 + j_2 + j_3)(j_1 - j_2 + j_3)(j_1 + j_2 - j_3 + 1)(j_1 + j_2 + j_3 + 2) \right]^{\frac{1}{2}}$$

$$V_{3A} = \left[(-j_1 + j_2 + j_3)(j_1 - j_2 + j_3)(j_1 + j_2 - j_3 + 1)(j_1 + j_2 + j_3 + 1) \right]^{\frac{1}{2}}$$

$$V_{3B} = \left[(-j_1 + j_2 + j_3 + 1)(j_1 - j_2 + j_3 + 1)(j_1 + j_2 - j_3)(j_1 + j_2 + j_3 + 2) \right]^{\frac{1}{2}}$$

Moreover
$$A_K = j_K(j_K + 1)$$
, $const = \frac{6^3 |Z|^{\frac{3}{2}}}{(\ell_P)^3}$

Plot of the Result: Increasing

20

10

0.0002

0.00015

0.0001

0.00005

cements

If we set $j_1 = \frac{3}{2}$, $j_2 = j_3 + \frac{1}{2}$ where $j_3 \in \mathbb{N}$, $1 \le j_3 \le 40$ we get:

$$\| \hat{H}_{kin,v}^{(grav)} \| \propto \frac{1}{3 (1+j_3) (1+2j_3)^2} \times 4 j_3 (-9+21j_3+14j_3^2) \left(-\left(3^{\frac{1}{8}} (j_3 (2+j_3))^{\frac{1}{8}}\right) + \left(-3+4j_3+4j_3^2\right)^{\frac{1}{8}}\right)^2 \times \left(-2 (j_3 (2+j_3))^{\frac{1}{8}} + \sqrt{2} 3^{\frac{1}{8}} \left(-3+4j_3+4j_3^2\right)^{\frac{1}{8}}\right)^2 \left((j_3 (3+2j_3))^{\frac{1}{8}} - \left(-6+9j_3+6j_3^2\right)^{\frac{1}{8}}\right)^2 \\ \| \hat{H}_{kin,v}^{(grav)} \| _{\{j_1:\frac{3}{2}, j_2:j_3+\frac{1}{2}\}}$$

$$Asymptotically this increases as$$

- j_3

$$\| \hat{H}_{kin,v}^{(grav)} \| \propto 1.06 \cdot 10^{-6} j_3^{\frac{3}{2}}$$

30

Boundedness of Inverse Scale Factor Expectation Values I

• Complexifier Coherent States

$$\begin{split} \psi_{(A_0,E_0)} &= \sum_{\gamma} \ \psi_{\gamma,(A_0,E_0)} := [e^{-\hat{\mathbf{C}}/\hbar} \ \delta_{A'}]_{A'\mapsto A^{\mathbb{C}}(A_0,E_0)} \\ \text{where} \ A^{\mathbb{C}} := \sum_{n=0}^{\infty} \ \frac{i^n}{n!} \ \{\mathbf{C},A\}_{(n)} \quad \text{and} \ \{\mathbf{C},A\}_{(0)} = A \ , \ \{\mathbf{C},A\}_{(n+1)} = \{\mathbf{C},\{\mathbf{C},A\}_{(n)}\}, \\ \text{moreover} \quad \delta_{A'}(A) = \sum_c T_c(A')\overline{T}_c(A) \text{ with } c = \gamma, \vec{j}, \vec{I} \\ (\text{Compare with harmonic oscillator:} \ \mathbf{C}_{osci} = \frac{p^2}{2m\omega}, \text{ classicality parameter } s = \frac{\hbar}{m\omega}), \\ \text{should be adapted to Hamiltonian } C, \text{ but that's too complicated} \end{split}$$

 \rightsquigarrow Area Operator (~ $E^2(S))$ as complexifier

$$\psi_{\gamma,(A_0,E_0)} = \prod_{e \in E(\gamma)} \psi_{e,(A_0,E_0)}$$

where $\psi_{e,(A_0,E_0)}(A) = \sum_{2j=1}^{\infty} (2j+1) \ e^{-\frac{t(e)}{2}j(j+1)} \operatorname{Tr}(\pi_j(g_e(A_0,E_0) \ h_e(A)^{-1})),$
 $g_e(A_0,E_0) \approx e^{\frac{i}{2}\tau_j E_0^j(S_e)} h_e(A_0)$

Boundedness of Inverse Scale Factor Expectation Values II: Singularity Avoidance

■ U(1)³-CS Calculation (results qualitatively equal to full SU(2)-calc, T. Thiemann, O. Winkler GCS I-III)

► Study
$${}^{(r)}\hat{e}_e^j(v) = \operatorname{Tr}\left[\tau_j \hat{h}_e \left[\hat{h}_e^{-1}, \hat{V}_v^r\right]\right]$$
 for $SU(2)$
 $\hat{q}_e^j(v,r) = i \hat{h}_e^j \left[(\hat{h}_e^j)^{-1}, \hat{V}_v^r\right]$ for $U(1)^3$

where
$$\hat{V}_v^r = \ell_P^3 \left[\left| Z \sum_{I < J < K} \epsilon(I, J, K) \hat{q}_{IJK} \right| \right]^{\frac{r}{2}}$$

 $\hat{q}_{IJK} = \epsilon_{ijk} X_I^i X_J^j X_K^k \qquad SU(2)$
 $\hat{q}_{IJK} = \epsilon_{ijk} n_I^i n_J^j n_K^k \qquad U(1)^3$

• Coherent States

$$\Psi_{m,\gamma}^{(v)} = \prod_{\substack{e \in E(v)\\j=1,2,3}} \sum_{\substack{n_e^j \in \mathbb{Z}}} e^{-\frac{t(e)}{2} [n_e^j]^2} \left[h_e^j (Z(m)) h_e^j (A)^{-1} \right]^{n_e^j}$$

Boundedness of Inverse Scale Factor Expectation Values II: Singularity Avoidance

• Upper Bound for Expectation Value at *M*-Vertex in $U(1)^3$ -CS

$$\left\langle \begin{array}{l} \Psi_{m,\gamma}^{(v)}(A) \left| \begin{array}{l} \hat{H}_{kin,v}^{(grav)} \left| \begin{array}{l} \Psi_{m,\gamma}^{(v)}(A) \end{array} \right\rangle \leq \\ \leq \frac{(36)^2}{(\ell_P)^3} \frac{(9M)^6 |Z|^{\frac{3}{2}} \left[\frac{2A}{T^2}\right]^6}{\prod_{I,i} [1+K_{t(I)}^i]} \left[\left[\frac{3Mp}{4T} \right]^6 + \sum_{n=1}^6 \frac{6!}{(6-n)! \ n!} \left[\frac{3Mp}{4T} \right]^{6-n} \prod_{l=1}^n \left[\frac{3M+2(l-1)}{4} \right] \right] \\ \end{array} \right\}$$

where
$$T = \min_{I} T_{I}, T_{I} = \sqrt{t(e_{I})}, t(e_{I}) := \frac{\hbar\kappa}{4L^{3}} f_{e_{I}}$$

 $p = \max_{I,i} p_{I}^{i},$
 $p_{I}^{i} \approx \frac{1}{L^{3}} \int_{e_{I}} E_{i}^{b} (e_{I}(t)) q_{ab}^{0} (e_{I}(t)) \dot{e}_{I}^{a}(t) dt \quad \mathbf{A} = 1 + \frac{p}{T}$

Expectation Value is finite, no matter if peaked at classically singular (E = 0) configuration)

Boundedness of Inverse Scale Factor Expectation Values III: Singularity Avoidance

Explicit edge Dependance - Problem with 'pathological edge configs:

Ruled out by gauge invariance:

$$\hat{V} = \sqrt{\left| Z \cdot \sum_{I < J < K < M} \left[\epsilon(IJK) - \epsilon(JKN) + \epsilon(IKN) - \epsilon(IJN) \right] \hat{q}_{IJK} \right|}$$

Boundedness of Inverse Scale Factor Expectation Values III: Singularity Avoidance

Explicit edge Dependance - Problem with 'pathological edge configs:

Ruled out by gauge invariance:

$$\hat{V} = \sqrt{\left| Z \cdot \sum_{I < J < K < M} \left[\epsilon(IJK) - \epsilon(JKN) + \epsilon(IKN) - \epsilon(IJN) \right] \hat{q}_{IJK} \right|}$$

Remaining Combinatorical Issue with Sign Factors and Volume Operator at M-valent vertex v

 \rightarrow work in progress (with D. Rideout)

Summary

 Analogon of Inverse Scale Factor not a bounded operator in full LQG

but

 U(1)³-CS calculation reveals boundedness of the expectation value encouraging, but not sufficient to prove quantum mechanical absence of singularity →

Need to construct (approximately) physical states which do not suffer from unbounded behaviour of hamiltonian. Construction in analogue to gr-qc/0507029 P. Singh, K. Vandersloot...

Singularity Avoidance

	Ideal Approach	Approximate Approach
(i)	\mathcal{H}_{phys}	kin. CS with $\left< \Psi, \hat{C} \Psi \right> pprox 0$
(ii)	Phys. \hat{H} via Partial Obs.	\hat{H}_{approx} via finite power series
		expansion of Partial Obs.
(iii)	CS preserved by \hat{H}	CS preserved by \hat{H}_{approx} ,
		if too difficult, take CS peaked on
		classically singular initial data
(iv)	Evolve expect. values	Evolve expect. values

• Generalize Result: \longrightarrow gauge invariant 4-vertex

2 Cosmology: Simplest Example FRW + Scalar Field

- Demand: Spatial homogeneity, isotropy \rightarrow fixes form of metric and line element $ds^2 = -d\tau^2 + a^2(\tau) \Big[\frac{dr^2}{1-kr^2} + r^2 \big(d\Theta^2 + \sin^2 \Theta d\phi^2 \big) \Big]$
- Scalar field ϕ : (Einstein's)equations for the scale factor (dep. on potential of $V(\phi)$)

$$3\frac{\dot{a}^2}{a^2} = 8\pi G_N \left(\frac{\pi^2}{2a^6} + \frac{a^3 V(\phi)}{a^3}\right) - 3\frac{k}{a^2} \quad \dot{\pi} = -a^3 \frac{dV(\phi)}{d\phi} \quad \text{with } \pi = a^3 \dot{\phi}$$

• Look at solutions close to a = 0

assume: $\lim_{a \to 0} a^3 V = 0$ and $\lim_{a \to 0} a^3 \frac{dV(\phi)}{d\phi} = 0$, $V(\phi)$ polynomial in ϕ $\sim \dot{\pi} \ll 1$ and $\pi \sim const$ near a = 0.

 \rightsquigarrow near a = 0: need to consider only the highest inverse power of a in Friedmann Eqn.(neglect all other terms)

$$\rightsquigarrow \phi \propto \ln[\tau]$$
 and $a^3 \phi^n \propto \tau \ln[\tau]^n$, thus the assumption was justified

Quantization Ambiguities ?

• Classical Identity: det
$$E = \operatorname{sgn} \left[\det(e) \right] \det(q)$$

with $\det(q) = \left[\det(e) \right]^2 > 0$

■ Therefore:

$$V = \int_{R} d^{3}x \sqrt{\det(q)} = \int_{R} d^{3}x \sqrt{\left|\det(E)\right|}$$
$$= \int_{R} d^{3}x \left|\det(e)\right| = \int_{R} d^{3}x \operatorname{sgn}\left[\det(e)\right] \left|\det(e)\right|$$

Consistency of Flux-Quantizaion (see Kristina's talk, paper $[gr-qc/0507036]) \longrightarrow$

$$\operatorname{sgn}\left[\operatorname{det}(e)\right] \stackrel{!}{=} \operatorname{sgn}\left[\operatorname{det}(E)\right] = \operatorname{sgn}\left[\hat{Q}\right] \qquad \text{where } \hat{V}_{AL} = \sqrt{\left|\hat{Q}\right|}$$