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Loop quantum cosmology

Symmetry-reduced form of loop

quantum gravity (LQG)

• Kinematics of LQG well understood

• Dynamics (Hamiltonian constraint of

theory) is where the difficulty is

• By analogy with minisuperspace models,

what can we learn from simplified

cosmological systems?

• What physical properties can we deduce?



For anisotropic, homogeneous models in loop
quantum cosmology, the constraint is a par-
tial difference equation, instead of a differential
equation

• As an example, we look in detail at vacuum Bianchi
I LRS (local rotational symmetry), where the Hamil-
tonian constraint becomes

2d2(m)[tm+1,n+1 − tm+1,n−1 − tm−1,n+1 + tm−1,n−1]

+d(n)[tm+2,n − 2tm,n + tm−2,n] = 0

for wave function coefficients tm,n and parameters
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Later, we will use the fact that
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when n > 1/2.



In general, solving recursion relations with generic

initial data gives sequences that alternate sign

with increasing parameters (m, n, ...)

m(am+1 − am−1) + 2am = 0 [m > 0]



Bianchi I LRS constraint:

2d2(m)[tm+1,n+1 − tm+1,n−1 − tm−1,n+1 + tm−1,n−1]

+d(n)[tm+2,n − 2tm,n + tm−2,n] = 0

To simplify this recursion relation, we notice

that it is separable into two equations:

am+1 − am−1 = (2λ/m)am

bn+1 − bn−1 = −λd(n)bn

Because d(n) ' 1/2m, these are essentially the

same equation (up to scaling of the separation

parameter λ).

We insist on ”pre-classicality” – wave functions

are smooth at large values of the parameters;

for example, in a one-parameter sequence am,

(am − am−1) → 0 m →∞



Generating function techniques

Instead of dealing with a sequence {am}, write

these as coefficients of a generating function

F (x)

{am} ⇔ F (x) =
∞∑

m=0

amxm

Operations on {am}map to operations on F (x):

{am+1} ⇔
F (x)− a0

x

{mam} ⇔ x
dF (x)

dx

The generalization for an arbitrary number of

parameters mi is obvious...

We write the Hamiltonian constraint for wave

functions as a differential equation for the gen-

erating functions F (xi) of our sequence



In general, when you solve the PDE for the

generating function F (xi), it has singularities

at various points

• Some singularities are ”bad”, such as (1 + x)−1,
where the coefficients {am} of the series expansion
oscillate:

1

1 + x
= 1− x + x2 − x3 + · · ·

• Others are ”good”, such as (1 − x)−1, where the
coefficients {am} are constant

1

1− x
= 1 + x + x2 + x3 + · · ·

Note this has to be a simple pole to avoid
coefficients increasing without limit, since

1

(1− x)2
= 1 + 2x + 3x2 + 4x3 + · · ·

Pre-classicality, asymptotic behavior of

sequences ⇔ conditions on poles of

generating functions



Solving the recursion relation

am+1 − am−1 = (2λ/m)am

turns out to be equivalent (for m > 0) to solv-

ing the ODE

d

dx
[(1− x2)G(x)]− 2λG(x) = a0

where

F (x) = a0 + xG(x)

Because of the (1−x2) term multiplying dG(x)/dx,

the solution G(x) can have poles at x = ±1.



The generating function for the relation with
λ = −1 will have a double pole at x = −1;
requiring

[(1 + x)2F (x)]x=−1 = 0

gives a condition on the ratio a1/a0 of the ini-
tial data of the sequence



Complete solutions
(gr-qc/0506024)

The advantage of using generating functions

is that we can obtain the values am for any m,

not just integers.

For example, with a0 = 0 and λ > 0, we have

that the generating function of the sequence

is

F (x) = a1x(1 + x)λ−1(1− x)−λ−1

The coefficients of the Taylor series give the

values am:

am = a1

m−1∑
j=0

(−1)j
( λ− 1

m− j − 1

)(−λ− 1

j

)

By using hypergeometric functions, this can be

defined for all real values of m.



Plot of am when λ = 3/2

(using 1/m in the recursion relation)



When d(n) is used in the recursion relation,
sequences must be numerically evolved from
large m; again choosing λ = 3/2...

each line on the LHS represents a non-integer
b, where m = n + b, (n an integer).



The scaling of the sequence varies as a func-

tion of the non-integer ”remainder” b...

Plot of the ratio aM/a−M for large M versus b

(for λ = 3/2)



For λ < 0, solutions are more limited – either
there are no pre-classical solutions (for a0 = 0)
or the sequence is pre-classical only on one side
(a0 6= 0).

Plot with λ = −1, m = n + 3/4



Results: Full Bianchi I
(gr-qc/0501016)

Classical metric given by

ds2 = −dt2 +
3∑

i=1

a2
i (t)dx2

i

for scale factors ai(t)

Hamiltonian constraint for vacuum case in LQC:

d(m1)[tm1,m2+1,m3+1−tm1,m2−1,m3+1−tm1,m2+1,m3−1+tm1,m2−1,m3−1]

+ (cyclic) = 0

This can be written as a product of three sep-

arable sequences, satisfying the relations dis-

cussed previously, with

λ1λ2 + λ1λ3 + λ2λ3 = 0

Since pre-classicality requires λk > 0, there are

no pre-classical solutions at all for this recur-

sion relation!



Results: Bianchi I LRS
(gr-qc/0405126)

Two of the three scale factors ai(t) in the
metric on the previous slide are the same

Slope goes to zero for m � 1; essentially no
variation in n direction



Using numerical techniques adapted to solv-

ing these difference equations (Connors and

Khanna, gr-qc/0509081), one can find solu-

tions when a cosmological constant is added:

For large m, n, these numerical solutions should

be matchable to the semi-classical solution of

the WdW equation



Results: Self-adjoint Schwarzschild interior
(preliminary)

The recursion relation away from the horizon

(m ≥ 2) is given by (Ashtekar and Bojowald,

gr-qc/0509075)

(
√
|n + 1|+

√
|n|)(sm+1,n+1 − sm−1,n+1)

+(
√
|n− 1|+

√
|n|)(sm−1,n−1 − sm+1,n−1)

+(
√
|n + 1/2| −

√
|n− 1/2|)

[
(n + 1)sm+2,n

−κnsm,n + (n− 1)sm−2,n

]
= 0

The constant κ depends on the Barbero-Immirzi

parameter γ and a quantum ambuigity δ

Again, this is separable into two relations, which

are more complicated that those for Bianchi I



For the ”time” sequence bn which passes through

the singularity n = 0, there is no restriction on

the value of the separation parameter λ...

When λ < −2, initial data is free of restrictions

and the solution grows without bound:



When λ > −2, the ratio b1/b0 is fixed to ensure

no oscillations far from the origin



For the ”spatial” am sequences, the generating

function has the polynomial (x4 − κx2 + 1) in

front of the derivative dG/dx. Since κ ≥ 0, this

means there are poles at x = ±x0,±1/x0.

One of these must be avoided to prevent os-

cillations at large m; another will cause the se-

quence to grow without limit (choose am → 0

as m →∞ as boundary condition).

Since there are four initial values (a0, . . . , a3),

with at most two to fix, it seems that we again

have freedom in our choices for all λ



Conclusions, future work

• Generating function methods are useful in finding
the space of pre-classical solutions for the discrete
Hamiltonian constraint in LQC

• Against expectations, pre-classical solutions for vac-
uum anisotropic models studied so far are non-
existent (Bianchi I) or very limited (Bianchi I LRS)

• It appears there is sufficient freedom in the Schwarzschild
interior to build up generic wave forms at the
horizon of the black hole

• Further avenues to explore:

– addition of matter (e.g. scalar field)

– physical wave functions via group averaging


