Anisotropic homogeneous models in
loop quantum cosmology

Daniel Cartin
Naval Academy Preparatory School
cartin@naps.edu

in collaboration with
G Khanna (U Mass, Dartmouth)

gr-qc/0405126 (with M Bojowald)
gr-qc/0501016
gr-qc/0506024




Outline

1. Loop quantum cosmology

2. Generating function techniques

3. Complete solutions

4. Results
e Full Bianchi I
e Bianchi I LRS
e Self-adjoint Schwarzschild interior

(preliminary)

5. Conclusions, future work



Loop quantum cosmology

Symmetry-reduced form of loop
quantum gravity (LQG)

Kinematics of LQG well understood

Dynamics (Hamiltonian constraint of
theory) is where the difficulty is

By analogy with minisuperspace models,
what can we learn from simplified
cosmological systems?

What physical properties can we deduce?



For anisotropic, homogeneous models in loop

quantum cosmology, the constraint is a par-
tial difference equation, instead of a differential

equation

e As an example, we look in detail at vacuum Bianchi
I LRS (local rotational symmetry), where the Hamil-
tonian constraint becomes

2do(m) [tm41.041 — tmt1n—1 — tm—1n+1 + tm—1,n—1]

+d(n) [tm—l—Q,n — th,n + tm—Q,n] =0

for wave function coefficients t,,, and parameters
m,n, With

/ 1 1

dz(m)Z% m 7= O

and

LLater, we will use the fact that

d(n) = % +0(n3) ~ —dQ;")

when n > 1/2.



In general, solving recursion relations with generic
initial data gives sequences that alternate sign
with increasing parameters (m,n,...)

m(am+1 — am-1) + 2am =0 [m > 0]




Bianchi I LRS constraint:

2do(m) [tm+1.041 — tmt1n—1 — tm—1n+1 + tm—1,n—1]
+d(n) [tm—I—Q,n — th,n + tm—Q,n] =0

To simplify this recursion relation, we notice
that it is separable into two equations:

Amt1 — Am—1 = (2A/m)an,

bpt1 — bn_1 = —Ad(n)by

Because d(n) ~ 1/2m, these are essentially the
same equation (up to scaling of the separation
parameter \).

We insist on " pre-classicality” — wave functions
are smooth at large values of the parameters;
for example, in a one-parameter sequence a,,

(am —a;—1) — O m — 00



Generating function techniques

Instead of dealing with a sequence {am}, write
these as coefficients of a generating function
F(z)

{am} & F(z)= ) ama™

m=0

Operations on {a;,} map to operations on F(x):

(1) & D0
dF'(x)

{mam} & =
dx

The generalization for an arbitrary number of
parameters m; is obvious...

We write the Hamiltonian constraint for wave
functions as a differential equation for the gen-
erating functions F(x;) of our sequence



In general, when you solve the PDE for the
generating function F(x;), it has singularities
at various points

e Some singularities are "bad"’, such as (1 + z)71,
where the coefficients {a,} of the series expansion
oscillate:

1

— 1 2_ .34 ...
1—|—:c_1 x4+ x x” +

e Others are "good”, such as (1 — z)~ !, where the
coefficients {a} are constant
1
l—=zx

Note this has to be a simple pole to avoid
coefficients increasing without limit, since

1
(1—x)2

=1l4+az+z"+2°+- -

=142¢+32°+ 423+ ---

Pre-classicality, asymptotic behavior of
sequences < conditions on poles of
generating functions



Solving the recursion relation

Amt1 — Am—1 = (2A/m)am,

turns out to be equivalent (for m > 0) to solv-
ing the ODE

[ - 2)G@)] - 22G(@) = ao

where

F(x) = ao + xG(x)

Because of the (1—z2) term multiplying dG(z) /dzx,
the solution G(x) can have poles at x = +1.



The generating function for the relation with
A = —1 will have a double pole at = —1;
requiring

[(1+ 2)?F(2)]p=_1 =0

gives a condition on the ratio ai/ag of the ini-
tial data of the sequence
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Complete solutions
(gr-qc/0506024)

The advantage of using generating functions
is that we can obtain the values a,, for any m,
not just integers.

For example, with ag = 0 and XA > 0, we have
that the generating function of the sequence
IS

F(z) =a1z(1 + )1 (1 —2) M1

The coefficients of the Taylor series give the
values am,:

By using hypergeometric functions, this can be
defined for all real values of m.



Plot of ay when A= 3/2
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(using 1/m in the recursion relation)



When d(n) is used in the recursion relation,
sequences must be numerically evolved from
large m; again choosing A = 3/2...

-1mIIIIIIIIIIII

each line on the LHS represents a non-integer
b, where m = n + b, (n an integer).



The scaling of the sequence varies as a func-
tion of the non-integer "remainder” b...
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Plot of the ratio ap;/a_j; for large M versus b
(for A =3/2)



For A < O, solutions are more limited — either
there are no pre-classical solutions (for ag = 0)
or the sequence is pre-classical only on one side

(ag # 0).

Plot with A=—-1m=n+43/4



Results: Full Bianchi I
(gr-qc/0501016)

Classical metric given by

3
ds? = —dt* + Y a?(t)dx?
i=1
for scale factors a;(t)

Hamiltonian constraint for vacuum case in LQC:

d(ml)[tml,m2+1,m3-|—1_tml,m2—1,m3—|—1_tml,m2+1,m3—1+tm1,m2—1,m3—1]
+ (cyclic) =0

This can be written as a product of three sep-
arable sequences, satisfying the relations dis-
cussed previously, with

A1A2 + A1A3 + A3 =0
Since pre-classicality requires A\ > O, there are

no pre-classical solutions at all for this recur-
sion relation!



Results: Bianchi I LRS
(gr-ac/0405126)

Two of the three scale factors a;(t) in the
metric on the previous slide are the same

Slope goes to zero for m > 1; essentially no
variation in n direction



Using numerical techniques adapted to solv-
ing these difference equations (Connors and
Khanna, gr-qc/0509081), one can find solu-
tions when a cosmological constant is added:

For large m,n, these numerical solutions should
be matchable to the semi-classical solution of
the WdAW equation



Results: Self-adjoint Schwarzschild interior
(preliminary)

The recursion relation away from the horizon
(m > 2) is given by (Ashtekar and Bojowald,
gr-qc/0509075)

(VIn+ 1]+ VInD Gmt1mt1 — Sm-1m41)
+(/In =1+ VD Smotm-1 — Smtin-1)
+(VIn+1/2| = V/In = 172D [(n + Dsmi2n

—KkNnSmn + (n — 1)sm_2,n} =0

The constant x depends on the Barbero-Immirzi
parameter v and a quantum ambuigity ¢

Again, this is separable into two relations, which
are more complicated that those for Bianchi I



For the " time"” sequence b, which passes through
the singularity n = 0O, there is no restriction on
the value of the separation parameter ...

When A < —2, initial data is free of restrictions
and the solution grows without bound:
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When A > —2, the ratio b1/bg is fixed to ensure
no oscillations far from the origin
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For the " spatial” a., sequences, the generating
function has the polynomial (z% — kz2 4+ 1) in
front of the derivative dG/dx. Since k > 0, this
means there are poles at * = +xq, =1 /xp.

One of these must be avoided to prevent o0s-
cillations at large m; another will cause the se-
quence to grow without limit (choose a;,, — 0O
as m — oo as boundary condition).

Since there are four initial values (aq,...,a3),
with at most two to fix, it seems that we again
have freedom in our choices for all A\



Conclusions, future work

Generating function methods are useful in finding
the space of pre-classical solutions for the discrete
Hamiltonian constraint in LQC

Against expectations, pre-classical solutions for vac-
uum anisotropic models studied so far are non-
existent (Bianchi I) or very limited (Bianchi I LRS)

It appears there is sufficient freedom in the Schwarzschild
interior to build up generic wave forms at the

horizon of the black hole

Further avenues to explore:

— addition of matter (e.g. scalar field)

— physical wave functions via group averaging



