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The usual formulation of the Lorentzian BC model

Let ∆ be a triangulation of a closed 4-manifold. F = dual faces =
triangles, E = dual edges = tets, V = dual vertices = 4-simplices.

Partition function for ∆:

A(∆) ≡
∫ ∞

0
· · ·
∫ ∞

0︸ ︷︷ ︸
f ∈F

(∏
f ∈F

Af

)(∏
e∈E

Ae

)(∏
v∈V

Av

)∏
f ∈F

p2
f dpf ,

where Av = 10j symbol ,

Ae = eye diagram = • • = Θ4 ,

and Af = 1 .

(This is the Perez-Rovelli normalization.)
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Av

Av is the 10j symbol
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Av =

∫
H3

∫
H3

∫
H3

∫
H3

∏
f 3v

Kpf
(φf

v )
∏
e3v

one skipped

dxe ,

where

Kpf
(φf

v ) =
sin(pf φf

v )

pf sinh(φf
v )

and φf
v is the hyperbolic distance between xe and xe′ , where e and

e ′ are the two tets in v that are separated by the triangle f .
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Ae

Ae = Θ4(p1, . . . , p4) =
2

π

∫ ∞

0

sin(p1r) sin(p2r) sin(p3r) sin(p4r)

p1p2p3p4 sinh2(r)
dr ,

This can be integrated exactly, but we will see it is better to leave
it unintegrated.
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Summary of usual formulation

A(∆) ≡
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Problem: the 10j symbols (Av ) are very hard to compute!
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Face factoring (Cherrington, gr-qc/0508088)

Similar to dual variables idea of Pfeiffer (CQG 2002). Exchange
the order of integration, to obtain:

A(∆) =

(∏
e

∫ ∞

0
dre

)(∏
v

( ∏
e3v ,e 6=ev

0

∫
H3

dxv
e

))
A(∆, x i

e)

where A(∆, x i
e) ≡

1

lots of sinh’s

∏
f

∫ ∞

0
Ff (pf , φ

f
v , re) dpf

is expressed using the face factors

Ff (pf , φ
f
v , re) ≡

sin(pf φf
1) · · · sin(pf φf

m) sin(pf ref
1
) · · · sin(pf ref

m
)

p2m−2
f

.

Here m is the number of vertices = number of edges in the face f .
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Amazing facts

At first glance, the exchange of integration looks like a dumb idea:
we’ve traded a high-dimensional integral over the pf ’s for an even
higher-dimensional integral over the re ’s and the xv

e ’s. But:

I The integrand factors into pieces that each depend on only
one pf .

I These face factors can be integrated symbolically and thus
evaluated efficiently.

I The integrated face factors are non-negative.
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Amazing facts

At first glance, the exchange of integration looks like a dumb idea:
we’ve traded a high-dimensional integral over the pf ’s for an even
higher-dimensional integral over the re ’s and the xv

e ’s. But:

I The integrand factors into pieces that each depend on only
one pf .

I These face factors can be integrated symbolically and thus
evaluated efficiently.

I The integrated face factors are non-negative.

All of these have implications for numerical computations; see
Wade Cherrington’s poster at this conference.

This talk will focus on some of the theoretical implications.
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Finiteness

Consider the following analog of the 10j symbol:

A′v =

∫
H3

∫
H3

∫
H3

∫
H3

∏
0≤i<j≤4

k(φij) dx1 · · · dx4 ,

where

k(φ) =
φα

sinh(φ)
, α ≥ 0 ,

and φij is the hyperbolic distance from xi to xj .

For α < 1, this kernel is divergent at φ = 0, and the product of ten
of these kernels has a complicated singularity structure.

Cherrington shows that if A′v is convergent for each α ≥ 0, then
the face-factored Lorentzian partition function is absolutely
convergent, even for degenerate triangulations. This was previously
shown by Crane, Perez and Rovelli for non-degenerate
triangulations.
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I’ve proved that these singular 10j symbols are absolutely
convergent. First, a simple observation:

Lemma
Let y be a point in H3. Then the integral∫

H3

(k(φ(x , y)))m dx =

∫
H3

(
φ(x , y)α

sinh(φ(x , y))

)m

dx

is absolutely convergent for 2 < m < 3 and any α ≥ 0. Moreover,
the value is independent of y .

Proof: When 2 < m, it is integrable at infinity. And when m < 3,
it is integrable at the origin.
It is clearly translation invariant.
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Sketch of proof of finiteness of singular 10j :

Write kij = kji = k(φij). The integrand is

(k01k14k43k32k20)(k04k42k21k13k30)

So we get the following upper bound on the integrand:

(k01k14k43k32k20)(k04k42k21k13k30)

≤ 1

2

(
(k01k14k43k32k20)

2 + (k04k42k21k13k30)
2
)
.

(All of the inequalities discussed here hold pointwise, for each
x0, . . . , x4 in H3.)

The two terms on the right-hand side are symmetrical, so it
suffices to show that the first is integrable.
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We will show that
(k01k14k43k32k20)

2

is integrable. Using the convexity of exp, we have

(k01k14k43k32k20)
2 = (k2

01k
2
14k

2
43k

2
32k

2
20)

≤ 1

5

(
(k2

14k
2
43k

2
32k

2
20)

5/4 + · · ·+ (k2
01k

2
14k

2
43k

2
32)

5/4
)

=
1

5

(
(k14k43k32k20)

5/2 + · · ·+ (k01k14k43k32)
5/2
)

.

We’ll focus on first term; rest similar.
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First term is (k14k43k32k20)
5/2. Order the integrations as follows:∫

H3

∫
H3

∫
H3

∫
H3

(k14k43k32k20)
5/2 dx1 dx4 dx3 dx2.

The innermost integral is ∫
H3

k
5/2
14 dx1,

which is finite and independent of x4 by the Lemma. Similarly, the
next integral is ∫

H3

k
5/2
43 dx4,

which produces a constant. And so on.
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The same argument gives a simple proof that the usual Lorentzian
10j symbol is finite (known by work of Baez and Barrett). Note
that no hyperbolic geometry or ε’s were needed!

It also proves that the various causal 10j symbols introduced by
Livine-Oriti and by Pfeiffer are finite, in both the Lorentzian and
Riemannian cases. The kernels are singular in these cases, and
these are new results.

In fact, the method works for any kernel K such that∫
H3

K (φ(x , y))5/2 dx

is absolutely convergent.

It extends to other spin networks as well, but so far not to the 6j
symbol.

13 / 19



Positivity (Cherrington-Christensen, gr-qc/0509080)

Recall that we rewrote the partition function as

A(∆) =

(∏
e

∫ ∞

0
dre

)(∏
v

( ∏
e3v ,e 6=ev

0

∫
H3

dxv
e

))
A(∆, x i

e)

where

A(∆, x i
e) ≡

1

lots of sinh’s

∏
f

∫ ∞

0
Ff (pf , φ

f
v , re) dpf

and

Ff (pf , φ
f
v , re) ≡

sin(pf φf
1) · · · sin(pf φf

m) sin(pf ref
1
) · · · sin(pf ref

m
)

p2m−2
f

.
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So if we can show that∫ ∞

0

sin(a1t) · · · sin(ant)

tn−2
dt

t = pf

ai = φf
v or re

is non-negative for all a1, . . . , an > 0, this will prove that the
Lorentzian partition function is non-negative.

Theorem
This integral is non-negative for n ≥ 3 (which covers all cases that
arise in practice).

For n = 3, this can be checked by doing the integral symbolically.
For n ≥ 4, we can use Fourier methods:
Since the integrand is even, it suffices to show that∫ ∞

−∞
t2

n∏
i=1

ai sinc(ai t) dt

is non-negative, where sinc(t) = sin(t)/t.
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Use that∫ ∞

−∞
t2

n∏
i=1

ai sinc(ai t) dt = F

(
t2

n∏
i=1

ai sinc(ai t)

)
(k = 0) .

Computing the Fourier transform gives

F
(

t2
n∏

i=1

ai sinc(ai t)

)
(k) = i

d

dk
F
(

t
n∏

i=1

ai sinc(ai t)

)
(k)

= − d2

dk2
F
( n∏

i=1

ai sinc(ai t)

)
(k)

= − π

2n−1

d2

dk2

n∗
i=1

χai (k) ,

where

χai (k) =

{
1, for −ai < k < ai

0, otherwise
.
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Now use that the convolution

n∗
i=1

χai (k)

is an even bump, i.e., it is symmetrical about 0 and decreases as
you go away from zero. This implies that

d2

dk2

n∗
i=1

χai (k = 0)

is non-positive, giving the desired result.

I Some delicate issues have been skipped; one has to be careful
when evaluating a Fourier transform at a point.

I Similar methods can handle models with different
normalizations, although the analysis gets much more
technical.
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Conclusions

The Lorentzian Barrett-Crane model is in many ways easier to
understand in the face-factored or dual variables form:

I It can be shown to be finite with a simple argument.

I It can be shown to be non-negative with a simple argument.

I Expectation values of observables can be computed using
statistical methods, even though we don’t know that the
“paths” in the usual formulation have non-negative
amplitudes. (We conjecture that they do.)

This has opened the door for numerical work on this model. See
Cherrington’s poster for more on this.
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