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What to do to find semiclassical states?

As has been repeatadely said in this conference:

• The semiclassical limit of LQG is very important.

• The semiclassical limit of LQG is very difficult.

• In the semiclassical limit of LQG dynamics is

very important.

But just how important it is, do we really know?

One of the motivations for studying this problem is

to gain intuition on the importance of dynamics in

the definition of semiclassical states.

Another motivation is even more basic:

What is a semiclassical state?

We will give partial answers to these question, to pave

the way for LQG.



What are semiclassical States?

Fix a point α in a linear phase space Γ with coordi-

nates (q0
i , p

0
i). Our task is to spell out what we mean

by a semi-classical quantum state which is ‘peaked at

this classical state’. One generally has the following

idea in mind:

• A semi-classical state Φα should be such that,

for all well-behaved functions F (qi, pi) on phase

space, the expectation values 〈Φα|F̂ |Φα〉 are close

to F (q0
i , p

0
i) and the fluctuations small.

However, such semi-classical states simply don’t exist

unless the class of observables is greatly restricted.

Take a harmonic oscillator. A coherent states Ψα

represents semi-classical states peaked at the point α

of the phase space Γ.



For, q, p, H , where H is the Hamiltonian, Ψα would

satisfy the above criteria (if the words ‘close to’ and

‘small’ are interpreted appropriately; as we will see

below).

However, if the set also includes eH/ε with ε ≤ h̄ω, co-

herent states would strongly violate the criteria. Of

course, for the harmonic oscillator the new observ-

able is rather strange and it is difficult to justify its

inclusion in the list on physical grounds, but there are

(quantum gravity) systems for which this observable

is important.

Thus, there is no canonical notion of semi-classicality

for the system, independent of one’s choice of observ-

ables.

The first lesson is that to ask for semi-classical

states, one must first specify a class of observables

for which the states are to be semi-classical.



The second subtlety has to do with the notion of

fluctuations.

The requirement that the fluctuations of an observ-

able F̂ in a state Ψ be small is generally formulated

as:

(∆F̂ )2Ψ
|〈Ψ|F̂ |Ψ〉|2

≡ 〈Ψ|F̂ 2|Ψ〉 − [〈Ψ|F̂ |Ψ〉]2

|〈Ψ|F̂ |Ψ〉|2
< δ2 ,

(1)

where δ denotes the ‘tolerance’ one wishes to allow.

There is, however, the following problem with this

proposal: if the expectation value 〈F̂ 〉Ψ vanishes, the

requirement can never be met!

For constrained systems we would like to consider

kinematical coherent states which are peaked at a

point on the constraint surface with only a small

spread and compare them with physical semi-classical

states. Eq. (1) forbids us from taking such states.



Considerations regarding experimental limitations on

our measurements lead us to a specific notion of semi-

classicality that will be used here.

Given a state, if one were allowed to make arbitrarily

accurate measurements of any observable, one would

find deviations from the classical behavior.

Thus, a quantum state can be well approximated by

a classical one only if the experimental accuracy is

limited. To test semi-classicality, we must supply in-

formation about these experimental limitations, i.e.,

tolerances which are fixed at the outset. We will need

two sets of numbers, one specifying the tolerance in

the accuracy of the expectation value, and the other

one that in fluctuations.



A state Ψα will be said to be peaked at the point

α ∈ Γ and semi-classical with respect to a given

set of observables Fi if

|〈Ψα|F̂i|Ψα〉 − Fi(α)| < εi and (∆F̂i)Ψα < δi ,

(2)

where εi and δi are pre-specified tolerances deter-

mined by the desired experimental accuracy.



Strategy

The idea is to use the group averaging technique

to extract physical semi-classical states Ψphy
α —i.e.,

semi-classical states which are annihilated by the con-

straint operator— starting from standard coherent

states Ψα in Hkin.

Since the notion of semi-classicality is relative to a set

of observables, we will begin by fixing the set of Dirac

observables Oi of interest, together with tolerances εi

and δi. By definition, the physical states Ψphy
α will

be semi-classical if they satisfy (2).



The issue then is:

Can we make a suitable choice of Ψα that

will guarantee that the Ψphy
α are semi-classical?

An example of a sufficient condition for the answer

to be affirmative is:

|〈Ôi〉phy − 〈Ψα|Ôi|Ψα〉| < 1
2 εi and

|(∆Ôi)Ψphy
a
− (∆Ôi)Ψa| < 1

2 δi .

Recall that, given any Ψ ∈ Hkin, the group average,

Ψphy :=
1

Λ

∫ Λ
0 dλ e−iλĈ Ψ , (3)

where Λ is chosen such that e−iΛĈ = 1 Then Ψphy

satisfies the constraint, Ĉ · Ψphy = 0, and is thus a

physical state.

The theories we will consider will involve:

1. Linear and quadratic constraints and

2. General linear and quadratic observables.



Linear and Quadratic Constraints

Let us now consider constraints of the type

C := Kiqi + K̃ipi −∆ = 0 , (4)

where Ki, K̃i and ∆ are any real constants.

The constraint (4) can be written as C := κ̄izi +

κiz̄i − ∆ = 0, where the complex numbers κi are

related to Ki, K̃i in the obvious manner. Given any

coherent state Ψα in the kinematical Hilbert space,

where α is not necessarily on the constraint surface,

it is easy to verify that

Û(λ)Ψα := e−iλĈ Ψα = e−iλ C(α) Ψα(λ) , (5)

where C(α) is the value of the classical constraint C

at α and αj(λ) = αj − iλκj with αj labelling the

initial phase space point α given by,

αi :=
q0
i√
2 `i

+ i
`i p

0
i√

2 h̄
. (6)



we can always orient our basis so that we have

Kiqi + K̃ipi = q1, and the constraint reduces then to

the simple form

C = q1 −∆ = 0 . (7)

For simplicity, let us choose all `i to be equal. Then

in the q-representation, the action of Û(λ) on Ψα

further simplifies

Û(λ)Ψα(q) = N eiλ∆ ei(−λq1+p0· q/h̄) e−|q−q0|2/2`2 ,

(8)

The physical state can also be readily calculated:

Ψphy
α (q) :=

∫
dλ Û(λ)Ψα(q) =

= 2πN δ(q1 −∆) ei(p0· q)/h̄ e−|q−q0|2/2`2 .

We consider general polynomials F (z̄I, z̄J) and their

normal ordered quantum versions,

F̂ = : F (α†
I, aJ) :

. The expectation values of these operators in the



kinematic coherent states Ψα are just the values F (ᾱI, αJ)

of the classical functions F , evaluated at the points

α of the phase space:

〈Ψα|F̂ |Ψα〉 = F (ᾱI, αJ) . (9)

the fluctuations are given by

(∆F̂ )2α = 〈F̂ 2〉α−(〈F̂ 〉α)2 = G(ᾱI, αJ)−(F (ᾱI, αJ))2 .

(10)

Since F̂ and Ĝ do not involve â1 and â†1, it is easy to

calculate the expectation values and fluctuations also

in the (normalized) physical states (`2/4π)1/4 Ψphy
α (x).

One obtains that

〈F̂ 〉phy
α = F (αI, ᾱI),

and

(∆F̂ phy
α )2 = G(αI, ᾱI)− (F (αI, ᾱI))

2 .

If Ψα is semi-classical, then Ψphy
α will also satisfy our

semi-classicality criteria.



Example: Gauss constraint in Maxwell

Aa(x) =
1

(2π)3/2
∫

d3k eik·x
(
q1(k) k̂a + q2(k) ma + q3(k) m̄a

)

Ea(x) =
−1

(2π)3/2
∫

d3k eik·x
(
p1(k) k̂a + p2(k) ma + p3(k) m̄a

)

The phase space can be coordinatized by pairs (qi(k), pi(k)).

The fields qi(k), pj(k) are canonically conjugate in

the sense that

{qi(−k), pj(k
′)} = δij δ3(k, k′) . (11)

The standard Kähler structure is given by the pos-

itive and negative frequency decomposition. The

holomorphic coordinates zi(k) are now given by

zj(k) =
1√
2

(
√
|k| qj(k)− i

h̄
√
|k|

pj(k)) . (12)

The Gauss law DaE
a = 0 is equivalent to p1(k) = 0

which, in turn, can be recast as an infinite set of

commuting constraints,

Cf(k) :=
∫

d3k f̄ (k)(z1(k)− z̄1(k)) = 0 , (13)



one for each regular function f (k) in the momentum

space (e.g., an element of the Schwartz space in R3).

Hkin is the Fock space obtained by operating re-

peatedly with the creation operators on the vacuum

state |0〉. For α, a coherent state Ψα, peaked at

zi(k) = αi(k), can now be constructed in Hkin:

|Ψα〉 = e
∫
(d3k/|k|) (α(k)·â†(k)−ᾱ(k)·â(k)) |0〉 . (14)

Assume αi(k) lies on the constraint surface, i.e., that

α1(k) is real.

By group average procedure, the action of the distri-

bution (Ψphy
α | on an arbitrary Ψβ is given by

(Ψphy
α |Ψβ〉 = 〈Ψα̂|Ψβ̂〉 , (15)

α̂1(k) = 0, α̂I(k) = αI(k) and β̂1(k) = 0, β̂I(k) =

βI(k).

Effectively ‘removing from Ψα all information about

the longitudinal modes, keeping the transverse modes

intact’.



By the general considerations, expectation values and

fluctuations of Dirac observables (independent of lon-

gitudinal modes) coincide with those of the kinemat-

ical coherent states.



Quadratic Constraints

C(qi, pi) := Sij qiqj + Λ Sij pipj + Aij qipj −∆ = 0 ,

Sij is a symmetric matrix, Aij an anti-symmetric ma-

trix, Λ a constant with dimensions [L2/(Action)]2,

and ∆ a real constant. For example,

C ~N(q, p) =
∫
M P ab(x) £ ~N qab(x) d3x , (16)

is in this class. In terms of the holomorphic coordi-

nates zi of Eq (??), the constraints we consider can

be written as

C(qi, pi) := κijziz̄j −∆ = 0 , (17)

Then, using as before normal ordering, the quan-

tum constraint operator becomes

Ĉ = κj N̂j −∆ 1̂ , (18)

with N̂j the jth number operator, N̂j = â†jâj (where

there is no summation over j)

e−iλĈ |Ψα〉 = eiλ∆ |Ψα(λ)〉 ,



A linear observable is one of the form:

O = F̄izi + Fiz̄i

We get that for the expectation values,

〈Ô〉phy
α =

〈Ψphy
α | Ô |Ψphy

α 〉
‖Ψphy

α ‖2
= O(α) , (19)

the same as the classical value. Similarly, for the

fluctuation we calculate

(∆Ô)2phy = (∆Ô)2kin = FiF̄i . (20)

That is, the fluctuations are preserved.

What about quadratic Observables?

Well, for general quadratic observables, the exact

expressions for expectation values and fluctuations

look kind of messy.

So, we illustrate with some examples:



Example 2: Constrained total energy

This example is very popular, and looks like,

C̃ :=
∑

i
p2

i

2m
+ kq2

i − ∆̃ = 0 . (21)

can be re-expressed as

C :=
1

h̄ω
C̃ = z1z̄1 + z2z̄2 −∆ = 0 , (22)

where ∆ = ∆̃/h̄ω. The kinematic phase space Γ is

R4; the constraint surface Γ̄ is a 3-sphere; and the

gauge orbits generated by the constraint function C

provide a Hopf fibration of Γ̄.

We need a set of at least three Dirac observables to

separate points of Γ̂. A convenient choice is

L1 = Re z1z̄2, L2 = Im z1z̄2, L3 = 1
2 (z1z̄1−z2z̄2) .

Our constraint operator is

Ĉ = âiâ
†
i −∆ =

∑
i N̂i −∆ . (23)

for i = 1, 2.



The physical coherent states are:

|Ψphy
α 〉 =

e−(|α1|2+|α2|2)/2

2π

∫ 2π
0 dλ

∞∑
n,m=0

αn
1 αm

2√
n!
√

m!
e−iλĈ |n, m〉 .

(24)

The Fock basis |n, m〉 satisfies Ĉ|n, m〉 = n+m−∆,

where ∆ = k := n + m is an integer, then,

|Ψphy
α 〉 =

1

2π

∫ 2π
0 dλ eiλ∆ |(α1e

−iλ), (α2e
−iλ)〉 . (25)

The physical Hilbert space is finite-dimensional (due

to the compactness of the reduced phase space), with

dim(Hphy) = k +1, and the projection operator that

projects the kinematical coherent state to the sub-

space spanned by kets of the form |n, k − n〉 for a

fixed value of k

Let us begin with the term a†1a1, and compute its

expectation value 〈Ψα| a†1a1|Ψα〉phy.



In this case we have

〈Ψα| a†1a1|Ψα〉phy = |α1|2
e−Ẽ

2πi

∮
|ζ|=1

dζ

ζ
ζ−(Ẽ−1) eẼ ζ

= |α1|2
e−k

(k − 1)!
kk−1 . (26)

The norm of the physical states Ψphy
α , is given by

‖Ψphy
α ‖2 =

e−|α|
2

2πi

∮
|ζ|=1 dζ

e|α|
2ζ

ζ∆+1

=
|α|∆e−|α|

2

∆ !
= e−k kk/k! . (27)

when we have used that the state is peaked on the

constraint surface where ∆ = |α|2 = k.

The physical expectation value for the three Dirac

observables is then,

〈L̂I〉phy :=
〈Ψα| L̂I|Ψα〉phy

〈Ψα|Ψα〉phy
= LI|cl

k

|α1|2 + |α2|2
.



Fluctuations.

For the fluctuations, on a physical coherent state

we have,

〈L̂2
I〉phy = L2

I|cl
k(k − 1)

(|α1|2 + |α2|2)2
+

k

4
. (28)

Therefore,

(∆L̂I)
2
phy = L2

I|cl
 −k

(|α1|2 + |α2|2)2

+k

4
= −1

k
L2

I|cl+
k

4
.

(29)

On the other hand, the fluctuations in the kinemati-

cal coherent states are given by

(∆L̂I)
2
kin =

1

4
(|α1|2 + |α2|2) =

∆

4
. (30)

Thus, the difference between the fluctuations is given

by

(∆L̂I)
2
kin − (∆L̂I)

2
phy =

1

k
L2

I|cl < (∆Ĉ)2kin . (31)



We conclude for this example:

i) The difference in the fluctuations is smaller than

the fluctuation of the constraint operator on Hkin;

ii) Group averaging actually reduces the dispersions.

If we begin with semi-classical kinematic states peaked

at points on the constraint surface, physical states

resulting from group averaging are guaranteed to be

semi-classical. Furthermore, the kinematical calcula-

tion provides a good upper bound on the dispersion

in the physical states.



Example 3: Constrained Energy Difference

C̃ :=

 p2
1

2m
+ kq2

1

−
 p2

2

2m
+ kq2

2

− ∆̃ = 0 . (32)

We again have two harmonic oscillators with the same

frequency, but now the constraint can be written as

C = |z1|2 − |z2|2 −∆ = 0 , (33)

The quantum constraint operator has the form

Ĉ = (â†1â1 − â†2â2)− ∆̃ . (34)

The physical states are then,

|Ψphy
α 〉 =

1

2π

∫ 2π
0 dλ eiλ∆ |(α1e

−iλ), (α2e
iλ)〉 . (35)

which takes the form,

‖Ψphy
α ‖2 =

e−∆

2πi

∮
|ζ|=1

dζ

ζ
ζ−∆ e(|α1|2 ζ+|α2|2 ζ−1) . (36)

The function to be integrated has a pole of infinite

order at the origin, whence we can not compute the

integral as easily in the previous example. But we can



still express the result in terms of special functions.

‖Ψphy
α ‖2 = e−(|α1|2+|α2|2)|α1|2k

∞∑
m=0

 1

k! (k + m)!

 |α1|2m|α2|2m

(37)

and use the identity

∞∑
n=0

(x/2)2n

n! (k + n)!
=

2

x


k

Ik(x) . (38)

where Im is a modified Bessel function. Then, the

norm can be expressed as:

‖Ψphy
α ‖2 = e−(|α1|2+|α2|2)(|α1|/|α2|)k Ik(2|α1||α2|) ,

(39)

we again have three quadratic Dirac observables:

J3 := 1
2 (z1z̄1+z2z̄2) , J+ := z1 z2 , J− := z̄1 z̄2 ,

with their corresponding combinations, J1 = 1
2(J+ +

J−) and J2 = i
2 (J+−J−). These observables provide

a realization of the sl(2,R) = su(1,1) Lie algebra.

The expectation values of Ĵ± —and therefore of Ĵ1,2—

in the physical coherent states coincide with the clas-



sical values:

〈Ĵ1,2〉phy = J1,2|cl . (40)

For fluctuations we obtain

(∆Ĵ1,2)
2
phy =

|α1||α2|
4

Ik−1(2|α1||α2|) + Ik+1(2|α1||α2|)
Ik(2|α1||α2|)

+1

2
(41)

and

(∆Ĵ1,2)
2
kin = 1

4 (|α1|2 + |α2|2 + 2) . (42)

Therefore we need to compare them, In particular,

the quotient
(∆J1,2)

2
phy−(∆J1,2)

2
kin

(∆J1,2)
2
kin

The fluctuations in both types of coherent states are

of the same order. However, now the fluctuations are

smaller in the kinematical coherent states than in the

physical states.

But if the initial kinematical coherent states are cho-

sen with tolerances 2δi/3, εi, the physical states will

be semi-classical with desired tolerances δi and εi.



What to learn from this?

• For all the examples considered, by restricting the

initial kinematical coherent states to have suit-

ably small tolerances, the group averaged physi-

cal states can be guaranteed to be semi-classical

for any specified choice of tolerances.

• The group averaging procedure offers a concrete

and potentially powerful strategy to construct phys-

ical semi-classical states for a class of constrained

systems.

• The purpose is to open a new avenue to investis-

gate wheter for more general systems, this prop-

erty continues to hold.

• The strategy might work, or could serve as a guide

for the search of the much desired states in semi-

classical LQG.


