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Some Results� complete set of Dirac observables� Poisson brackets between complete observables

( F � i� I � Ti � is a symplecto–morphism onto space of Dirac observables)

� physical Hamiltonians generate evolution wrt clock variables
(Kuchař 1972, Rovelli 1990, Thiemann 2004, B.D 2005)� partial observables invariant under subset of the constraints:
“non–perfect clocks”
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� infinitely many parameters needed to fix embedding� but: choose f such that it does not depend on all aspects of the embedding

� f invariant under a subset of the constraint: � space–time scalar



Reducing the Number of Constraints

PSfrag replacements

Space–Time

	 �KJVU 
 � condition for space-time scalar (K. Kuchař 1977):% C WN � Na ����	 �NJVU 
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Need onl y four constraints for calculation of complete obser vable
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Need onl y one constraint for calculation of complete obser vable!

choose another scalar T 0 � � C 
 : #C � � C 
��mW�% T 0 � � C 
Z� C MnW 1 � ' � $ 1C M � � C 

F � 0` KL � � C 
 �

\
k

1
k
_ #C W 1 � k W ` KL � � C 
 � � � 0 � T 0 � � C 
 
 k
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Conc lusions and Outlook

� partial and complete observables: method to systematically
investigateo observables and their algebra� can express observables of the covariant formalism in the
canonical formalism: compare quantizations� reduction to one constraint � approximation scheme� diffeomorphism invariant Abelian Hamiltonian constraints without
square roots

j good clock variables? � physical Hamiltonian (positive,

� –independent)j how to deal with bad clock variables?j quantization: different clock variables (with T. Thiemann)
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