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1. One Constraint

Arbitrary Many Constraints

General Relativity: infinitely many constraints
Reducing the Number of Constraints: co — one
Outlook
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One Constraint: FRW-Cosmology

Method: C.Rovelli (1990/2002)

Example: FRW-cosmology with massless scalar field
: 1, P2 PZ
phase space: x = (a,Pa, ¢,Py) constraint: C = 2( — + g)

Partial Observables: T =¢ (clock) f=a J

Complete Observable: F[ f(x') where

1.1 =
x'~xand T(x") =71

T 0

F a0 ) ) = @ EXP(=SGN(PaPo)(0 — 4)

Dirac Observable for arbitrary J
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Power Series

R 00 = 3 G G100 — T+ (s = T}

= f(x') with
x' gauge equivalent to x and
T(xX)=7n V i



Power Series

[f;Ti](X) = Z Wéll(l : "éhN[f](X)(Tl = Ta (X)) -+ (7 = T (x))*

Some Results

e complete set of Dirac observables

e Poisson brackets between complete observables

Ti

F

{ [-:T]

e physical Hamiltonians generate evolution wrt clock variables
(Kuchar 1972, Rovelli 1990, Thiemann 2004, B.D 2005)

e partial observables invariant under subset of the constraints:
“non—perfect clocks”

is a symplecto—morphism onto space of Dirac observables)
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T*(0) = 7 (o) = value of f on this embedding

e example: f = ¢(c*)

Space—Time

¢ infinitely many parameters needed to fix embedding
e but: choose f such that it does not depend on all aspects of the embedding
~ f invariant under a subset of the constraint: — space—time scalar
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Reducing the Number of Constraints

i e condition for space-time scalar (K. Kuchar 1977):
G {CIN,N?], ¢(c*)} = 0 for N(c*) = 0 = N3(c*)

\ b b
>Q ~ ¢(c*) invariant under almost all constraints

I Problem: does not hold for {{¢(c*),C[M,M?]},C[N,N?] }

Space-Time

Solution: Choose as clocks space-time scalar fields TX (o)
= Cx(0) = (A (0)Ci(0)  with Af(0) = {T*(0),Ci[1]}
are weakly Abelian
= {{#(c™), CIN“]},C[N" ]} = 0 for N¥ (o) = 0 = N"“(0*)

Need only four constraints for calculation of complete obser vable

X g
F[d)(( )) TK ()] Z |k||ck0[1] Ck3[1][¢(0*)] (ro — )k (s —T3)k3

depends on only four parameters ™ (%)
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Are there enough Space-Time Scalars?

e scalar matter fields, curvature invariants ~» physical coordinates
o P =TTy = TETEG™ — (T, CLIHTY, CL[1]}

o Bt i= {7, Cultl}, ...

e (over—) complete set of Dirac observables :

7K 7K 1 3 3 o

Fw-»F , ..., 7 € R3; 70 fixed
'YKL 6M’YKL T T T

K K
e {F - F # 0 in general

{ HKL ,YMN}
™(0) ™(0) ) ™) _1K(c*) . )
Jab(c*) ' p?(c*) function of F,YKL , FaM,yKL and 75 (0*), 75, (%)

* are canonically conjugated

™ (o) X o %
* physical Hamiltonian: {F . ,H =F =_—F
phy: { AKL T } Ayt T g A<t
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“Solving” the Diffeomorphism Constraints

e TA A =1,2, 3 matter fields (space—time scalars) as physical coordinates

C

e g"B(;C) .= D" . ph8 —D" 7

g ( ) TATBbgab p (T ) detfl(T’Ig)T’éT,Bbpab
are canonically conjugated

=1,2,3

7_C

« diffeomorphism invariant constraints C, (7°) := D _12
g~ /°CL
* are Abelian

( J.Brown, K. Kuchar (1995): another mechanism to get Abelian constraints)

Need only one constraint for calculation of complete obser vable!
choose another scalar TO(7¢):  C(7°) = [{T(+°),C_[1]}] 1CL(+°)

i p) = 5 S B O - T
k
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Conclusions and Outlook

*

*

partial and complete observables: method to systematically
investigate observables and their algebra

can express observables of the covariant formalism in the
canonical formalism: compare quantizations

reduction to one constraint ~» approximation scheme

diffeomorphism invariant Abelian Hamiltonian constraints without
square roots

good clock variables? ~~ physical Hamiltonian (positive,
T—independent)

how to deal with bad clock variables?
guantization: different clock variables (with T. Thiemann)
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