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I Causal Sets I

A causal set (or causet for short) is a set of
elements, C , with a binary relation, -<, called

<

"precedes" which satisfies the fOllowing ax-
Ioms:

1. Tra nsitivity: if x -< y and y -< z then x -< z,

\:Ix, y, z E C;

2. Non-circularity: if x -< y and y -< x then
x == y \:Ix,y E C (non-circularity);

3. Local finiteness: for any pair of fixed ele­

ments x and z of C, the set {ylx -< y -< z} of
elements lying between x and z is finite.

Of these axioms, the first two say that C IS

a part ia II y ord ered set 0r poset and the t hi rd
makes the set discrete.
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I The Causal Set Hypothesis I

The deep structure of spacetime is a causal
set

The discrete elements of the causal set are

related to each other only by the partial or­
dering that corresponds to a microscopic no­
tion of before and after, and the continuum
notions of length, space and time arise only
as approximations at large scales. Just as
ordinary matter appears smooth and contin­
uous on large scales but is really made of
atoms, so it is proposed spacetime appears
continuous to us but is fundamentally dis­
crete.

-----
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The number of causal set elements in a re­

gion gives rise in the continuum approxima­
tion to what we experience as the spacetime
volume of the region (in fundamental units
close to Planck units) and the order gives
rise in the continuum approximation to the
spacetime causal order.

Powerful theorems (by Hawking, Malament
and Levichev) in continuum causal analysis
tell us that the volume and causal structure

are enough to recover the full geometry and
this means that a causal set can contain enough
information to be able to be well-approximated
by a continuum spacetime.

+



A nice way to represent a causal set is by
drawing its Hasse diagram. For example:

-

FUTURE

.W PAST

Elements are vertices and relations are edges.
Element x precedes ("is in the past of") y

and y precedes z. Transitivity implies that
x precedes z so that relation does not need
to be drawn in. The irreducible relations are

called links. Element w is unrelated to any
other.

In a causal set that could be our visible uni­
verse there would be of the order of 10240

elements with a correspondingly large and
complex web of relations.



[Phenomenological effects of discreteness I

Assuming that causal set theory is right, the
spacetime we observe around us is only an
approximation to deeper level of reality that
is a causal set. One way to investigate po­
tential effects of that underlying discreteness
is to make models of matter, fields, par­
ticles etc. on the background of a causal
set that could have our observed spacetime
(Minkowski space for definiteness) as an ap­
proximation.

Question: What could that causet be?

Rough Answer: A causet that arises by dis­
cretising Minkowski spacetime "faithfully".

Detailed Answer: A causet that is produced
(with high probability) by a Poisson process
of "sprinking" elements at random into Minkowski
space so that the mean number of elements
falling in any region is given by the volume
of the region (in near-Planck units). The
sprinkled elements are endowed with the or-
der relations induced by the Minkowski causal
order.



---------.-

A Poisson distribution of points in 1+1
Minkowski

•

IMPORTANT POINT: This distribution is

Lorentz invariant - it is uniform in any frame.
Causal sets are Lorentz invariant.

[Claim: fundamental spacetime discreteness
+ Lorentz invariance leads more or less uniquely
to causal sets Henson]

7



I A. Model of source-detector response I

Consider the following setup

---~
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In the continuum, we model the output F
of the detector as the integral of the field's
value over the region V, i.e.

F == Iv d4y ¢(y)

¢(y ) == q .Jp ds G (x ( s ), y )

where P is the worldline of the source, q is
the charge of the source and s is proper time
along P.

G(x, y) is the retarded Green's function and
is equal to

G(x, y) == 211f8(lx - y12) if y E J+ (x)
o otherwise

_1_8(yO - xO - r)41fr '

where r is the spatial distance from x to y.

A short calculation shows that the field ¢(y)

is roughly constant over the detector region
and is equal to q/41rR as expected.



In a causet model of this same situation a

sprinkling Os of 4D Minkowski space replaces
the continuum background. The source is
now modelled as the subset, P, of the causet
which lies in a tube of unit Planck cross sec­
tion - in the rest frame of the detector ­
centred on the continuum worldline of the
source.

The detector region D is replaced by the set
15 of all elements that were sprinkled into
that region of spacetime. A scalar field is a
function from the elements of the causet to
the Reals.
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We need a causet analogue of the retarded

Green's function G(e'i, e,j) which is zero unless
ej is "on the past light cone of e/'. There
is such a thing [Daughton, Pullin, Salgado,
Sorki n]:

~ W~~\jr,)..y-

G(e'i, ej) == V6/121r if ei -< ej and the relation
between them is a link i.e. there's no other
element between them. And it's zero other­

wise. This works because the past links from
a given element are distributed like this:

o

o
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The output of the detector in this discreti­
sation is F a sum over all elements sprinkled
into the detector region:

F== Le.Ei5¢(ej)J

¢(ej) == q LeiEP G( ei, ej)

where q is the charge.

This is the total number of links between

elements in ,F and in 15 and it is something
we know how to estimate because we know

the statistics of the sprinkling.



The expected value of the field at ej is

(ePeej)) == qv~"i127r times the expected num­
ber of links between ej and elements sprinkled
into region P.

To calculate this, imagine P broken up intoI

tiny volumes, d4x. The probability that there'll
be an element in d4x at x is proportional to
d4x and the probability that it will be linked

to ej at point y is the probability that the
interval between x and y is empty of sprin­
kled points. That probability is e-l(x,y) where
lex, y) is the spacetime volume of the inter­
val.
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Thus we need to calculate

and it gives

so the deviation from the continuum result is

truly tiny. But what about fluctations about
the mean?



The statistical nature of the correspondence
between the continuum and the causal set
will mean that there are always deviations
from mean values (a crucial ingredient in the
derivation of the measured value of the cos­
mological constant from causal set theory)

\

The question is, how large will they be? Usu-
ally they are very small (e.g. 10-120 for the
cosmological constant). And so it turns out
in this case.

In general, if the mean of some quantity is
a large number N (here N is the number of
links between two subsets of a causet) and
there are no correlations, then the standard
deviation is VN and the IIsignal to noise ra­
tio" goes like VN4t.

For our link counting, there are some mild
correlations to be taken into account, but
the bound on the s.d. is still roughly VN.
For a detector of nuclear size with a time
resolution of 10-15s and R == 1M Parsec it
means a signal to noise ratio of 1015.

That's good agreement: TOO GOOD!!



I B. Swerves I

The fOllowing is a model (due to Henson) of
a massive particle moving on a causal set.
The idea is that a particle cannot follow an
exact straight line geodesic because of the
underlying discreteness but it does the best it
can do and still be approximately Markovian.

We call the effect swerves, after Lucretius:

"The atoms must a little swerve at times

- but only the least, lest we should seem
to feign motions oblique, and fact refute us
there."
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Swerves occur when a particle tries to move
along a straight line geodesic but cannot be­
cause the underlying reality is discrete.

Consider a sprinkling into Minkowski space­
time (1+1 dimensions are shown, really it is
3+1)

•
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At each stage: particle moves from the el­
ement, en, where it is to one in its causal
future, minimising the change in its momen­

tum, within a proper time Tf. Repeat.



Choosing Tf to be large compared with the
Planck scale means that the swerving effect
is small: the change in momentum is small
at each step. But over many steps it can add
up.

Due to the randomness of the sprinkling, the
momentum is going on a Lorentz invariant
random walk on the mass shell. In the hy­
drodynamics limit of a large number of steps
this is described by a "Brownian motion",
governed by a diffusion equation on the mass
shell:



This is the unique (up to a free parameter)
Poincare invariant, relativistically causal dif­
fusion on M4 x H3. The free parameter is
the diffusion constant. It is an Ornstein­

Uhlenbeck type stochastic process: a diffu­
sion in momentum that drives a secondary
process in spacetime.

Although the discrete model was rather ad
hoc (a nd aIso depends on the conti nuum, so
it can't be fundamental) the uniqueness of
this diffusion process means that any discrete
model that is Lorentz invariant and causal

will end up giving the same continuum model.

Dudley 1965; FD, Henson, Sorkin
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No conservation of energy:

Swerves produce a statistical acceleration of
particles: an initial distribution that is peaked
at zero energy in some frame will spread so
that later the distribution has support at high
energies in that frame. Is there any evidence
that particles do get spontaneously acceler­
ated?



No conservation of energy:

Swerves produce a statistical acceleration of
particles: an initial distribution that is peaked
at zero energy in some frame will spread so
that later the distribution has support at high
energies in that frame. Is there any evidence
that particles do get spontaneously acceler­
ated?
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I Cosmic Rays I

We have been cOllecting data on high en­
ergy cosmic rays for many decades and this
is what it looks like:

[Page 6 of Anchordoqui et al
http://arxiv.org/a bs/hep-ph/0206072]
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FIG, 1: Compilation of measurements of the differential energy spectrum of CRs. The dotted

line shows an E-3 power-law for comparison, Approximate integral fluxes (per steradian)
are also shown [18].



Their origin is a still a mystery. In the review
paper cited before the following were listed
as just some of the proposed sources:

Supernovae explosions, Large scale Galac­
tive wind termination shocks, Pulsars, Active
Galactic Nuclei, BL Lacertae, Spinning su­
permassive black holes, Large scale motions
and related shock waves resulting from struc­
ture formation, Relativistic jets produced by
powerful radiogalaxies, Electric polarisation
fields in plasmoids produced in planetoid im­
pacts on neutron star magnetospheres, Mag­
netars, Starburst galaxies, Magnetohydrody­
namic wind of newly formed strongly mag­
netized neutron .stars, Gamma ray burst fire­
balls, Strangelets, Hostile aliens with a big
cosmic ray gun.



Interestingly, the mechanism for the accel­
eration of the particles within this myriad
of sources is the same: Fermi acceleration

which is a statistical acceleration of charged
particles scattering off random magnetic field
irregularities: like swerves except that swerves
occur in the vacuum.

So could swerves be responsible for the ac­
celeration required to produce a cosmological
background of high energy protons, say, that
could account for the cosmic ray data?

Unfortunately, no. The Lorentz invariance
of the process means that a proton that al­
ready has energy l018eV, say, in the cosmic
frame, sees the lifetime of the universe as
only about ten years in its rest frame. If
the diffusion constant is such that this pro­
ton has a reasonable chance of doubling its
energy in the lifetime of the universe then it
would be so big that boxes of hydrogen gas
in the lab would spontaneously heat up at a
measureable rate.
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Speculations

So this simple model of swerves can't explain
the cosmic ray data. But the data just cries
out for a universal, cosmological acceleration
mechanism and it seems worth trying to im­
prove on the model.

One improvement would be to make it quan­
tum mechanical. We don't yet have the same
overarching framework for quantum random
walks that we do in the classical case. But re­

sults from quantum information theory sug­
gest that in contrast to classical diffusion in
which the variance of a Gaussian distribution

grows as t,· in a quantal diffusion the vari­

ance would increase as t2 [Carlos Perez ].
If we can argue that hydrogen in the lab is
classical whereas protons in space are quan­
tal, we may be able to finesse the laboratory
constraints on the diffusion constant and pro­
duce a model that can provide a cosmological
acceleration mechanism for cosmic rays.



I Conclusion I

The concrete kinematics of causal set the­

ory allows us to do phenomenology. Lorentz
invariance is a key feature in all models.

A simple model of source-detector coupling
shows that a scalar field on a causal set back­

ground can reproduce continuum results very
well - TOO WELL!

The model of swerves has new and poten­

tially measureable effects on particle propa­
gation.

Perhaps quantum swerves can produce a cos­

mological background of high energy cosmic

ray primaries to match the observed flux. High
energy cosmic rays would then be the Brown­

ian motion of our age: the phenomenon that
in the future will convince us of the funda­

mental discreteness of spacetime itself.
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