On timelike faces in q-Lorentzian spinfoam models

> Loops'05 October 2005-Potsdam

Winston Fairbairn Centre de physique théorique Marseille

In collaboration with: Philippe Roche

1

Outline

- Spinfoam models with $\Lambda=0$
- Λ and quantum groups
- Towards a $\mathfrak{U}_q(su(1,1))$ model ?
- Conclusion

Spinfoam models with $\Lambda=0$

• $GR \equiv constrained BF$ theory Idea : BF theory is topological \Rightarrow direct quantization \rightarrow Use this to quantize GR

• BF theory: $S_{BF} = \int_M Tr(B \wedge F[A])$, favorite group G, dim(M) = 4

-Partition function: $Z_{BF}(M) = \int \mathcal{D}A \ \delta(F[A])$

-Discretization: triangulation \mathcal{T} of $M \to \text{dual 2-skeleton} = (v, e, f) \subset \mathcal{T}^*$

$$\left. \begin{array}{l} A \to g_e \in G \\ F \to g_f = \prod_{e \in \partial f} g_e \end{array} \right\} \to Z_{BF}(\mathcal{T}) = \int \prod_e dg_e \prod_f \delta(g_f) dg_e \int dg_e \prod_f \delta(g_f) dg_e dg_e \int dg_e \int$$

Spinfoam models with $\Lambda = 0$

- Expansion of $\delta(g)$ in characters :

 $\rightarrow \mathcal{Z}_{BF}(\mathcal{T}) = \int \prod_{e} dg_e \prod_{f} \sum_{\{\alpha_f\}} \dim(\alpha_f) tr(\prod^{\alpha_f} (g_f))$

 \Rightarrow face $f \leftrightarrow$ representation α_f

-Calculation of the group integrals: each edge $e \leftrightarrow 4$ faces $f \equiv 4$ representations α_f

 $\xrightarrow{\Rightarrow} \text{edge } e \leftrightarrow \text{intertwiner } i_e \in Hom_G(\bigotimes_{f \in e} \overset{\alpha_f}{\mathbb{V}}, \mathbb{C})$

-Result: each vertex $v \equiv 10$ faces & 5 edges \Rightarrow vertex $v \leftrightarrow 10$ representations α_f contracted with 5 intertwiners $i_e \equiv (10j)$ symbol $\equiv A(v)$ $\mathcal{Z}_{BF}(\mathcal{T}) = \sum_{\{\alpha_f\}} \sum_{\{i_e\}} \prod_f A(f) \prod_e A(e) \prod_v A(v)$

-Problem: Divergencies for large representations

Spinfoam models with $\Lambda=0$

• Gravity: $S = \int_M B^{IJ} \wedge F_{IJ}[A] - \frac{1}{2}\lambda_{IJKL}B^{IJ} \wedge B^{KL}$ $G = SL(2, \mathbb{C})_{\mathbb{R}}$

 \longrightarrow GR $\equiv BF$ + constraints on B

 \Rightarrow Idea: Impose the constraints at the simplicial level, i.e constrain B in the discretized BF path integral

-Sum over *B* configurations \leftrightarrow sum over representations α 's : $B_f = \int_f B \Leftrightarrow \alpha_f = (k_f, \rho_f) \in \mathbb{N}/2 \times \mathbb{R}$

-BC Prescription to impose the constraints :

 \Box faces f colored by simple representations $(C_2(k, \rho) = 0) \equiv \alpha = (k, 0)$ or $\alpha = (0, \rho) \equiv$ area quantum number

 \rightarrow Face f colored by a representation $\alpha = (0, \rho)$ (resp

 $\alpha = (k, 0)) \rightarrow$ spacelike (resp timelike)

Spinfoam models with $\Lambda = 0$

 \Box edges *e* labelled by BC intertwiners i_{BC} intertwining between simple representations

$$i_{BC} = \int_G dg (\langle \omega(\alpha_i) \mid \prod^{\alpha_i} (g) \rangle^{\otimes_{i=1}^4}$$

- $\omega(\alpha)$) $\equiv su(2)$ -invariant vector in $\overset{\alpha}{\mathbb{V}} \Leftrightarrow$ intertwiner between spacelike $\alpha = (0, \rho)$ faces

- $\omega(\alpha)$) $\equiv su(1,1)$ -invariant vector in $\mathbb{V}^{\alpha} \Leftrightarrow$ intertwiner between spacelike $\alpha = (0, \rho)$ and timelike $\alpha = (k, 0)$ faces

 $\Box Result : Lorentzian BC model$

 $\mathcal{Z}_{BC}(\mathcal{T}) = \sum_{\text{simple rep}} \prod_f A(f) \prod_e A(e) \prod_v A(v)$

→ $A(v) \equiv (10j)(i_{BC})$ □ Problem : $\sum_{\text{simple rep}} \equiv \text{large area divergencies} \sim \text{infrared}$

Λ and quantum groups

- Objective: Kill the infrared divergencies of the BC model
- \Rightarrow cut off on the representations
- \rightarrow Physically: horizon $\Lambda > 0$

 \rightarrow Mathematically: Switch group representations \leftrightarrow quantum group representations

• How is Λ related to quantum groups ?

$$\Box Z_{BF,\lambda}(M) = \int \mathcal{D}A\mathcal{D}B \ e^{i\int_M Tr(B\wedge F) - \frac{\Lambda}{12}Tr(B\wedge B)}$$

 $\rightarrow Z_{BF,\Lambda}(M) \propto I_{CS}(\partial M)$

 $\Box \text{ Crane-Yetter invariant } Z_{CY}(q, \mathcal{T}) \equiv 4d \ BF \text{ with } SU(2) \leftrightarrow \mathfrak{U}_q(su(2))$

 $\rightarrow Z_{CY}(q, \mathcal{T}) = I_{CS}(\partial M)$

Λ and quantum groups

 \Box Result :

- $Z_{CY}(q, M) \propto Z_{BF,\Lambda}(M)$ with $q = \exp(i l_p^2 \Lambda)$
- q root of unity $\Rightarrow Z_{CY}(q, M)$ is finite

 \rightarrow Well established relation $\Lambda \leftrightarrow$ quantum groups in the case of BF theory

 $\Rightarrow \Lambda \leftrightarrow \text{quantum groups} \Rightarrow \text{finite models}$

Λ and quantum groups

• Idea: use the same methods for theories with local degrees of freedom \Rightarrow cosmologically deform the BC model

 $\square \text{ Noui-Roche model} \equiv 4d \text{ BC model } restricted \text{ to spacelike faces}$ with $SL(2, \mathbb{C})_{\mathbb{R}} \leftrightarrow \mathfrak{U}_q(sl(2, \mathbb{C}))_{\mathbb{R}}$

- $q = \exp(-l_p^2 \Lambda) \Rightarrow$ bound on the area of a given face f:

 $l_p^2 \le a(f) \le 2\pi l_c^2$

- $\mathcal{Z}_{NR}(q, \mathcal{T})$ is finite

Towards a $\mathfrak{U}_q(su(1,1))$ model ?

 \Box How to generalize such a model to include timelike faces ?

• What would be the basic building block of a *q*-BC model with spacelike and timelike components?

⇒ The BC intertwiner \equiv a given representation module $\overset{\alpha}{\mathbb{V}}$ of the quantum Lorentz group and an invariant vector under $\mathfrak{U}_q(su(1,1))$

- First step: find an inclusion of $\mathfrak{U}_q(su(1,1))$ into the quantum Lorentz group
- Second step: represent the given $\mathfrak{U}_q(su(1,1))$ as to find the corresponding invariant vector ω

Towards a $\mathfrak{U}_q(su(1,1))$ model?

• Classically:

 \Box Lorentz group \equiv classical double of SU(2) (resp SU(1,1))

- $sl(2,\mathbb{C})_{\mathbb{R}} = \mathcal{D}(su(2)) = su(2) \oplus su(2)^*$, with $SU(2)^* \simeq \mathcal{H}_3^+$

-
$$sl(2, \mathbb{C})_{\mathbb{R}} = \mathcal{D}(su(1, 1)) = su(1, 1) \oplus su(1, 1)^*$$

 \Box What can we use ?

 \Rightarrow A representation space $\overset{\alpha}{\mathbb{V}}$ such that

 $\mathcal{D}(su(2)) - \overset{\alpha}{\mathbb{V}} \equiv \text{finite, unitary action}$

 \square Idea: Construct $\gamma : \mathcal{D}(su(1,1)) \to \mathcal{D}(su(2))$ such that $\gamma(\mathcal{D}(su(1,1)))$ can be represented unitarily

 \Box Result: γ gives us the classical inclusion of su(1,1) inside the classical lorentz algebra as a star subalgebra

 $\gamma(su(1,1)) - \overset{\alpha}{\mathbb{V}} \equiv \text{finite action} \Rightarrow \text{calculation of } \omega \text{ possible}$

Towards a $\mathfrak{U}_q(su(1,1))$ model ?

• Quantum case:

 \Box Quantum Lorentz group \equiv quantum double of $\mathfrak{U}_q(su(2))$ (resp $\mathfrak{U}_q(su(1,1)))$

- $\mathcal{D}\mathfrak{U}_q(su(2)) = \mathfrak{U}_q(su(2)) \otimes Pol(SU_q(2))^{op}$
- $\mathcal{D}\mathfrak{U}_q(su(1,1)) = \mathfrak{U}_q(su(1,1)) \otimes \mathfrak{U}_q(su(1,1))^*$
- \Box What have we got ?

 \Rightarrow A representation space $\overset{\alpha}{\mathbb{V}}$ such that

 $\mathcal{D}\mathfrak{U}_q(su(2)) - \overset{\alpha}{\mathbb{V}} \equiv \text{finite, unitary action}$

 \square We construct $\gamma : \mathcal{D}\mathfrak{U}_q(su(1,1)) \to \mathcal{D}\mathfrak{U}_q(su(2))$ such that γ gives us the quantum inclusion on $\mathfrak{U}_q(su(1,1))$ inside the quantum Lorentz group as a star subalgebra

 $\gamma (\mathfrak{U}_q(su(1,1))) - \overset{\alpha}{\mathbb{V}} \equiv ? \Leftrightarrow \text{representation impossible}$

Conclusion

• First steps towards the definition of a q-Lorentzian model including spacelike and timelike faces

- Classical case $(\Lambda = 0)$ works
- Quantum case $(\Lambda > 0)$: technical obstructions
- We have included $\mathfrak{U}_q(su(1,1))$ inside the quantum Lorentz group $\mathfrak{U}_q(sl(2,\mathbb{C})_{\mathbb{R}})$ as a star subalgebra
- We can currently not represent the inclusion in any known representation module of the quantum Lorentz group
- Conclusions: ... we will continue working !