Stone-von Neumann Theorem in Quantum Geometry

Christian Fleischhack

Max-Planck-Institut für Mathematik in den Naturwissenschaften Leipzig

Golm, October 2005

1 Contents

Introduction

- Motivation: SvN in Quantum Mechanics
- Quantum Geometry: Basics

Weyl Algebra

- Weyl Algebra in Quantum Geometry
- Natural Representation
- Stone-von Neumann Theorem

Holonomy-Flux Algebra

- Holonomy-Flux Algebra
- Natural State
- LOST Uniqueness Theorem

2 Motivation

Quantization:

representation of Poisson algebra by operators on kinematical Hilbert space

Question: Free or unique choice?

• Standard Example: Quantum Mechanics

Ingredients

configuration space
$$\mathcal{C}$$
 \mathbb{R} measure on \mathcal{C} $\mathrm{d}x$ kinematical Hilbert space $L_2(\mathbb{R},\mathrm{d}x)$

	position	momentum
selfadjoint exponentiated	$\widehat{x} = x \cdot e^{i\sigma\widehat{x}} = e^{i\sigma x} \cdot$	$\widehat{p} = -\mathrm{i}\partial_x$ $\mathrm{e}^{\mathrm{i}\lambda\widehat{p}} = L_\lambda^*$

Schrödinger representation

Why just these?

Weyl algebra \mathfrak{A} :

generated by 1-p groups $U(\sigma)$, $V(\lambda)$ with $U(\sigma) \ V(\lambda) = \mathrm{e}^{\mathrm{i}\sigma\lambda} \ V(\lambda) \ U(\sigma)$

Stone-von Neumann Theorem

1930/1931

The Schrödinger representation is the only regular and irreducible representation of \mathfrak{A} .

3 Quantum Geometry: Basics

Gravity ... SU(2) gauge field theory with constraints (Gauß, Diffeo, Hamilton) Quantum Geometry

Generalized Connections

$$\overline{\mathcal{A}} := \operatorname{Hom}(\mathcal{P}, \mathbf{G}) \ldots$$
 compact Hausdorff

Cylindrical Functions

Ashtekar-Lewandowski Measure

$$\mu_0$$
 ... "pull-back" measure of Haar measures i.e. $\pi_{{m \gamma}*}\mu_0=\mu_{{
m Haar}}$

Kinematical Hilbert Space

$$\mathcal{H} := L_2(\overline{\mathcal{A}}, \mu_0)$$

- Spin-Network Functions
 - . Spin network: graph γ nontrivial irrep ϕ_k on each edge γ_k
 - Spin-network function:

$$T_{\gamma,\phi} = \bigotimes_{k} (\phi_k)^{i_k}_{j_k} \circ \pi_{\gamma_k} : \overline{\mathcal{A}} \longrightarrow \mathbb{C}$$

4 Weyl Algebra in Quantum Geometry

- Diffeomorphisms
 - · Action: on graphs \Longrightarrow on $\overline{\mathcal{A}}$ \Longrightarrow on $C(\overline{\mathcal{A}})$
 - · Example: $\alpha_{\varphi}(f \circ \pi_{\gamma}) = f \circ \pi_{\varphi(\gamma)}$
 - $\cdot \ \mu_0$ diffeoinvariant \implies diffeos act unitarily on ${\cal H}$
- Fluxes

$$h_{\Theta^S_d(\overline{A})}(\gamma) := d(\gamma(0))^{\kappa(\gamma,S)} h_{\overline{A}}(\gamma) \qquad \text{(for } \gamma(0) \in S)$$
 function from M to \mathbf{G} hypersurface in M

with
$$\kappa(\gamma,S) = \begin{cases} +1 & (\gamma \text{ "above" } S) \\ 0 & (\text{otherwise}) \\ -1 & (\gamma \text{ "below" } S) \end{cases}$$

· Example: parallel transports along $\gamma_1\gamma_2$

$$\begin{array}{c|c} \text{for } \overline{A} & \text{for } \Theta_d^S(\overline{A}) \\ \hline h_{\overline{A}}(\gamma_1) \ h_{\overline{A}}(\gamma_2) & h_{\overline{A}}(\gamma_1) \ d(x)^2 \ h_{\overline{A}}(\gamma_2) \end{array}$$

- $\cdot \;\; \Theta_d^S$ homeomorphism on $\overline{\mathcal{A}}$
- Weyl Operators

$$w_d^S := (\Theta_d^S)^* : C(\overline{\mathcal{A}}) \longrightarrow C(\overline{\mathcal{A}})$$

Weyl Algebra for Quantum Geometry

$$\mathfrak{A}$$
 ... C^* -subalgebra of $\mathcal{B}(L_2(\overline{\mathcal{A}},\mu_0))$ generated by $C(\overline{\mathcal{A}})$ and $\mathcal{W}=\{w_d^S\}$

Goal: Representation Theory for $\mathfrak A$

5 Natural Representation π_0 of $\mathfrak A$ on $L_2(\overline{\mathcal A},\mu_0)$

- ullet Θ -invariance of $\mu_0 \implies$ unitarity of $w = \Theta^*$
- \bullet π_0 ... irreducible, regular, diffeo-invariant
- Irreducibility of π_0

CF: math-ph/0407006

$$\cdot \mathfrak{A}' \subseteq C(\overline{\mathcal{A}})' = L_{\infty}(\overline{\mathcal{A}}, \mu_0)$$

$$\implies \langle w(T), f \rangle = \langle T, f \rangle = \langle w'(T), f \rangle$$

 γ labelled with irrep ϕ S labelled with constant $g \in \mathbf{G}$

a) ϕ abelian:

$$\langle T, f \rangle = \langle w(T), f \rangle = \overline{\phi(g^2)} \langle T, f \rangle$$

b) ϕ nonabelian:

$$\langle w_i(T), w_j(T) \rangle = \left| \frac{\chi_{\phi}(g^2)}{\dim \phi} \right|^2$$

 $\implies \langle T, f \rangle = 0 \quad \text{for all } T \neq \mathbf{1} \text{ and } f \in \mathfrak{A}'.$

· Result: $\mathfrak{A}' = \mathbb{C} \mathbf{1}$

Expectation: Stone-von Neumann Theorem

 π irreducible, regular, diffeo-invariant $\implies \pi \cong \pi_0$

6 **Stone-von Neumann Theorem**

- canonical repr. of $C(\overline{\mathcal{A}})$ on $L_2(\overline{\mathcal{A}}, \mu_{\nu})$ 1. $\pi|_{C(\overline{\mathcal{A}})} = \bigoplus_{\nu} \pi'_{\nu}$
- $2. \quad \pi_{\nu} = \pi_0|_{C(\overline{\mathcal{A}})}$ for some u

$$w_{\mathrm{e}^{t\mathfrak{d}}}^{S}(\alpha_{\varphi_{m}}(f)) = \phi(\mathrm{e}^{2mt\mathfrak{d}}) \, \alpha_{\varphi_{m}}(f)$$
 (G abelian)

- 3. $\pi = \pi_0$
 - ullet invert orientation of S by diffeo w and w^* conjugate
 - assume: diffeo act naturally π_{ν_1} diffeo-invariant $\stackrel{\mu_1=\mu_2}{\Longrightarrow}$ π_{ν_2} diffeo-invariant

Theorem:

CF: math-ph/0407006

- Assume $\bullet \dim M \geq 3$
 - hypersurfaces finitely triangulizable
 - diffeos stratified analytic
 - diffeos act naturally
 - d constant

Then π_0 is the only regular representation of $\mathfrak A$ having a cyclic und diffeomorphism invariant vector.

7 Holonomy-Flux Algebra

• Smearing $d = e^{tf}$

$$h_{\theta_{tf}^S(\overline{A})}(\gamma) \ := \ \mathrm{e}^{\kappa(\gamma,S)tf(\gamma(0))} \ h_{\overline{A}}(\gamma) \qquad \text{(for } \gamma(0) \in S)$$
 function from M to \mathfrak{g}

ullet Flux Vector Fields $X_f^S: \operatorname{Cyl} \longrightarrow \operatorname{Cyl}$

$$X_f^S \psi := \frac{\mathrm{d}}{\mathrm{d}t}|_{t=0} \psi \circ \theta_{tf}^S$$

 \cdot Space of Generalized Vector Fields on $\overline{\mathcal{A}}$

$$\Gamma(T\overline{\mathcal{A}}) := \operatorname{Cyl} \cdot \langle X_f^S \rangle_{\text{Lie bracket}}$$

ACZ Holonomy-Flux Algebra

$$\mathfrak{A}_{\mathsf{ACZ}} := \operatorname{Cyl} \times \Gamma(T\overline{\mathcal{A}})^{\mathbb{C}}$$

with

$$\{(\psi_1, Y_1), (\psi_2, Y_2)\} = -(Y_1\psi_2 - Y_2\psi_1, [Y_1, Y_2])$$

Quantum Holonomy-Flux *-Algebra

$$\mathfrak{A}_{\mathsf{LOST}} := \operatorname{Free}_{\operatorname{lin}}(\mathfrak{A}_{\mathsf{ACZ}})/\operatorname{relations}$$

Relations:

$$\begin{array}{rcl} (a,b)-(b,a) & = & \mathrm{i}\;\{a,b\} \\ (\psi,c)+(c,\psi) & = & 2\psi\cdot c \end{array} \quad \text{(CCR)}$$

• Symmetries: analogous

Goal: States for \mathfrak{A}

8 States on \mathfrak{A}_{LOST}

Invariance w.r.t. bundle automorphisms $\varphi: P \longrightarrow P$

$$\omega = \omega \circ \alpha_{\varphi}$$

• Standard invariant state ω_0

$$\omega_0(a \cdot \widehat{Y}) = 0 \qquad (a \in \mathfrak{A}_{LOST}, Y \in \Gamma(T\overline{\mathcal{A}})^{\mathbb{C}})
\omega_0(\widehat{\psi}) = \int_{\overline{\mathcal{A}}} \psi \, d\mu_0 \qquad (\psi \in Cyl)$$

Theorem:

LOST: gr-qc/0504147

- Assume $\bullet \dim M \ge 2$
 - hypersurfaces semianalytic
 - diffeos semianalytic
 - smearings with compact support

Then ω_0 is the only state on $\mathfrak{A}_{\mathsf{LOST}}$ that is invariant w.r.t. bundle automorphisms.

9 Proof of LOST Uniqueness Theorem

1. $[\widehat{X}_f^S] = 0$ locally

Idea:
$$(f_1, f_2) := \left\langle [\widehat{X}_{f_1 R}^S], [\widehat{X}_{f_2 R}^S] \right\rangle \quad (R \in \mathfrak{g})$$
 $\varphi_{\lambda} := \operatorname{id} + \lambda \chi \vec{e} \quad (\text{diffeo for small } \lambda)$ $F(\vec{x}) := \vec{e} \cdot \vec{x} \quad (\text{on supp } \chi)$

$$\mathbb{R} \times \mathbb{R}^{n-1}$$

$$h \otimes f =: \chi$$

$$h(0) = 1$$

$$\Longrightarrow \qquad \varphi_{\lambda}^* F = F + \lambda \chi$$

$$\implies (F, F) = (\varphi_{\lambda}^* F, \varphi_{\lambda}^* F)$$
$$= (F, F) + 2\lambda \operatorname{Re}(F, f) + \lambda^2 (f, f)$$

$$\Longrightarrow$$
 $(f,f) = 0$

- 2. $\mathcal{H}_{\omega} = L_2(\overline{\mathcal{A}}, \mu)$
 - $\pi_{\omega}(\widehat{\psi} \ \widehat{Y}_1 \cdots \widehat{Y}_n)[\widehat{Y}_{n+1}]$ and $[\widehat{\psi}]$ generate \mathcal{H}_{ω}
- 3. $\mu = \mu_0$

	LOST	Fleischhack
theory	gauge field theory	gauge field theory
geometric ingredients	$\begin{array}{c} \text{principal fibre bundle } P \\ \cdot \text{ structure group } G \\ \cdot \text{ base manifold } M \end{array}$	$\begin{array}{c} \text{principal fibre bundle } P \\ \cdot \text{ structure group } G \\ \cdot \text{ base manifold } M \end{array}$
smoothness	stratified analytic C^{k} semianalytic	stratified analytic C^0 semi- or subanalytic
basic assumptions	\cdot G compact connected Lie \cdot M stratified analytic \cdot dim $M \geq 2$	\cdot G compact connected Lie \cdot M analytic \cdot dim $M \geq 3$
diffeomorphisms	stratified analytic	stratified analytic
positions exponentiated smeared along	connections · yes · paths	connections · yes · paths
paths	stratified analytic	stratified analytic
momentaexponentiatedsmeared along	fluxes · no · surfaces	fluxes · yes · surfaces
surfaces	stratified analytic open codimension 1 -	stratified analytic open codimension 1+ widely triangulizable
smearing functions	stratified analytic compactly supported	stratified analytic constant on strata
algebra	holonomy-flux algebra	Weyl algebra
type	*-algebra	C^* -algebra
generators	positions \cdot cylindrical functions on $\overline{\mathcal{A}}$	positions \cdot continuous functions on $\overline{\mathcal{A}}$
	momenta • weak derivatives of pull-backs of left/right translations on \overline{A}	momenta (unitary) · pull-backs of left/right translations on $\overline{\mathcal{A}}$
uniqueness	state	representation
assumed cyclicity	cyclic invariant vector	cyclic invariant vector
domain assumptions	common dense domain: cylindrical functions	_
regularity assumptions	_	regularity w.r.t. smearing
add'l assumptions	_	natural diffeo action
required invariance	all bundle automorphisms · diffeomorphisms · gauge transformations	some bundle automorphisms some diffeomorphisms—

Table 1: Comparison between LOST and Fleischhack