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1. Introduction

• Connection dynamics of GR

The Hamiltonian:

Htot = G(Λ) + V( ~N) +H(N),

with the constraints algebra

{G(Λ), G(Λ′)} = G([Λ, Λ′]),

{G(Λ), V( ~N)} = −G(L ~NΛ),

{G(Λ), H(N)} = 0,

{V( ~N), V( ~N ′)} = V([ ~N, ~N ′]),

{V( ~N), H(M)} = −H(L ~NM),

{H(N), H(M)} = −V((N∂bM −M∂bN)
P̃ a

i P̃
bi

| det q|
)

−G((N∂bM −M∂bN)Aa
P̃ a

i P̃
bi

| det q|
)

−(1 + γ2)G(
[P̃ a∂aN, P̃

b∂bM ]

| det q|
).
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Characters of the above Poisson algebra:

? The algebra generated by the Gaussian constraintsG(Λ) forms not only a subalgebra but

also a 2-side ideal in the full constraint algebra.

? The subalgebra generated by thediffeomorphism constraintsV( ~N) cannot form an ideal.

? It is not a Lie algebra, because the Poisson bracket between the two scalar (Hamiltonian)

constraintsH(N) andH(M) has structure function depending on dynamical variables

even modulo the Gauss constraint.

The last two characters cause much trouble in solving the constraints in loop quantum gravity.
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• Hamiltonian constraint operator in LQG

Although the kinematical Hilbert spaceHKin := L2(A, dµAL) and the diffeomorphism in-

variant Hilbert spaceHDiff have been constructed rigorously [Ashtekar el, JMP 36(1995),

6456], the quantum dynamics is still an open issue. Given any cylindrical function

ψα ∈ HKin and certain state-dependent triangulationT (ε), the dual Hamiltonian con-

straint operator̂H′(N) acts on a diffeomorphism invariant stateΨDiff ∈ HDiff as

(Ĥ′(N)ΨDiff)[ψα] = lim
ε→0

ΨDiff(Ĥε(N)ψα),

where theregulated Hamiltonian constraint operatorĤε(N) is densely defined inHKin as

Ĥε(N)ψα = (Ĥε
E(N)− 2(1 + γ2)T̂ ε(N))ψα =

∑
v∈V (α)

N(v)Ĥε
vψα,

here the action of̂Hε
v onψα adds edgeseij(∆) with 1

2-representation to the vertexv(∆) of

α [Thiemann, CQG 15(1998), 839].
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Is there any quantum anomaly?

Good evidence:

? The action of thedual commutator of two Hamiltonian constraint operatorson

ΨDiff ∈ HDiff

([Ĥ(N), Ĥ(M)])′ΨDiff = 0

? Thedual commutator between the Hamiltonian constraint operator and finite diffeomor-

phism transformation operator

([Ĥ(N), Ûϕ])′ΨDiff = Ĥ′(ϕ∗N −N)ΨDiff
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Severalunsettledproblems:

? It is unclear whether the commutator between two Hamiltonian constraint operators re-

sembles the classical Poisson bracket between two Hamiltonian constraints. Hence it is

doubtfulwhether the quantum Hamiltonian constraint produces the correct quantum dy-

namicswith correct classical limit.

? Thedual Hamiltonian constraint operator does not leaveHDiff invariant. The inner prod-

uct structure ofHDiff cannot be employed in the construction of physical inner product.

? Classically the collection ofHamiltonian constraints do not form a Lie algebra. So one

cannot employ group averaging strategy in solving the Hamiltonian constraint quantum

mechanically.

Where is the way out?
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• Master constraint program

Idea: If one could construct analternative classical constraint algebra, giving the same

constraint phase space, which is aLie algebraand where the subalgebra ofdiffeomorphism

constraints forms an ideal, then the programme of solving constraints would be much

improved at a basic level.

Introduce themaster constraint[Thiemann, gr-qc/0305080]:

M :=
1

2

∫
Σ
d3x

|C̃(x)|2√
| det q(x)|

,

whereC̃(x) is the scalar constraint. One then gets the master constraint algebra as a Lie

algebra:

{V( ~N), V( ~N ′)} = V([ ~N, ~N ′]),

{V( ~N), M} = 0,

{M , M} = 0,

where the subalgebra of diffeomorphism constraints forms an ideal.

So it is possible to define a corresponding master constraint operator onHDiff .
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2. A Self-adjoint Master Constraint Operator

2.1. Define the master constraint operatorM̂

• Regularization

The regularized version of the master constraint

M ε :=
1

2

∫
Σ
d3y

∫
Σ
d3xχε(x− y)

C̃(y)√
VU ε

y

C̃(x)√
VU ε

x

,

whereχε(x − y) is any 1-parameter family of functions such thatlimε→0 χε(x − y)/ε3 =

δ(x− y) andχε(0) = 1.

Introducing apartitionP of the 3-manifoldΣ into cellsC, we have an operator̂Hε
C acting

on any cylindrical functionfα ∈ HKin via astate-dependent triangulationT (ε) onΣ

Ĥε
C fα =

∑
v∈V (α)

χC(v)

C3
n(v)

∑
v(∆)=v

ĥε,∆
v fα, (1)

whereχC(v) is the characteristic function of the cellC.



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

The expression of̂hε,∆
v reads

ĥε,∆
v =

16

3i~κ2γ
εijkTr(Â(αij(∆))Â(ek(∆))−1[Â(ek(∆)),

√
V̂U ε

v
])

+2(1 + γ2)
4
√

2

3i~3κ4γ3ε
ijkTr(Â(ei(∆))−1[Â(ei(∆)), K̂ε]

Â(ej(∆))−1[Â(ej(∆)), K̂ε]Â(ek(∆))−1[Â(ek(∆)),

√
V̂U ε

v
]),

which is similar to the previous regulated Hamiltonian constraint operator. The only differ-

ence is that now thevolume operatoris replaced by itsquare-root.

Thus, for eachε > 0, Ĥε
C is a well-definedYang-Mills gauge invariant and diffeomor-

phism covariant operatorin HKin.
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• Definition

Define amaster constraint operator, M̂, inHDiff as

M̂ := lim
P→Σ;ε,ε′→0

∑
C∈P

1

2
Ĥ ′ε†

C Ĥ ′
C

ε′, (2)

whereĤ ′ε†
C andĤ ′

C
ε′ are well defined by

(Ĥ ′
C

ε′Ψ)[fα] := Ψ[Ĥε
Cfα],

(Ĥ ′ε†
C Ψ)[fα] := Ψ[Ĥε†

C fα],

for any cylindrical functionfα ∈ Cyl, and anyΨ ∈ Cyl?, hereCyl? is the algebraic dual

of the set of cylindrical functionsCyl.

Since the actions of̂Hε
C andĤε†

C on anyfα only add finite edgeswith 1
2-representations to

the graphα, one haslimP→σ

∑
C∈P

1
2Ĥ

ε
CĤ

ε′†
C fα ∈ Cyl, and hence given any

ΨDiff ∈ HDiff , the value of

(M̂ΨDiff)[fα] := lim
P→σ;ε,ε′→0

ΨDiff [
∑
C∈P

1

2
Ĥε

CĤ
ε′†
C fα] (3)

is finite.
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For any diffeomorphism transformationϕ,

(Û ′
ϕM̂ΨDiff)[fα] = lim

P→σ;ε,ε′→0
ΨDiff [

∑
C∈P

1

2
Ĥε

CĤ
ε′†
C Ûϕfα]

= lim
P→σ;ε,ε′→0

ΨDiff [Ûϕ

∑
C∈P

1

2
Ĥε

ϕ−1(C)Ĥ
ε′†
ϕ−1(C)fα]

= lim
P→σ;ε,ε′→0

ΨDiff [
∑
C∈P

1

2
Ĥε

CĤ
ε′†
C fα].

HenceM̂ leavesHDiff invariant

(Û ′
ϕM̂ΨDiff)[fα] = (M̂ΨDiff)[fα].

In conclusion,M̂ is densely defined inHDiff .
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2.2. Self-adjointness ofM̂

Given two diffeomorphism invariant cylindrical functionsη(fβ) andη(gα) associated with the

cylindrical functionsfβ andgα, thematrix element ofM̂ is calculated as

< η(fβ)|M̂ |η(gα) >Diff

= (M̂η(gα))[fβ]

= lim
P→σ;ε,ε′→0

∑
C∈P

1

2
(η(gα))[Ĥε

CĤ
ε′†
C fβ]

= lim
P→σ;ε,ε′→0

∑
C∈P

1

2

1

nα

∑
ϕ∈Diff/Diffα

∑
ϕ′∈GSα

< ÛϕÛϕ′gα|Ĥε
CĤ

ε′†
C fβ >Kin

= lim
P→σ;ε,ε′→0

∑
C∈P∑

s

1

2

1

nα

∑
ϕ∈Diff/Diffα

∑
ϕ′∈GSα

< ÛϕÛϕ′gα|Ĥε
CΠs >Kin< Ĥε′

CΠs|fβ >Kin

wherenα is thenumber of the elements of the group,GSα, of colored graph symmetries of

α, Diffα denotes thesubgroup ofDiff which mapsα to itself, γ(s) is thegraph associated

with the spin-network functionΠs, and theresolution of identity trick is used in the last step.
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Split the sum
∑

s into
∑

[s]
∑

s∈[s], where[s] denotes thediffeomorphism equivalent class

associated withs. Since the sum over[s] in the expression is finite, we canexchange

limP→σ;ε,ε′→0
∑

C∈P and
∑

[s], thentake the limitC → v,

< η(fβ)|M̂ |η(gα) >Diff

=
∑
[s]

∑
v∈V (γ(s∈[s]))

1

2
lim

ε,ε′→0
< η(gα)|η(Ĥε

vΠs) >Diff

∑
s∈[s]

< Ĥε′
v Πs|fβ >Kin

=
∑
[s]

∑
v∈V (γ(s∈[s]))

1

2
lim

ε,ε′→0
< η(gα)|η(Ĥε

vΠs) >Diff< η(Ĥε′
v Πs)|η(fβ) >Diff

=
∑
[s]

∑
v∈V (γ(s∈[s]))

1

2
(Ĥ ′

vη(gα))[Πs∈[s]](Ĥ
′
vη(fβ)[Πs∈[s]],

where inthe first stepwe use the fact that,givenγ(s) andγ(s′) which aredifferent up to a

diffeomorphismtransformation,there is always a diffeomorphimϕ transforming the graph

associated withĤε
vΠs (v ∈ γ(s)) to that of Ĥε

v′Πs′ (v′ ∈ γ(s′)) with ϕ(v) = v′, hence

< η(gα)|η(Ĥε
vΠs) >Diff is constantfor differents ∈ [s]. In the second step, we use the fact

that thesums
∑

s∈[s] and
∑

γ(s)∪a(v)∈[γ(s)∪a(v)], wherea(v) is the loop with scaleε′ added at

the vertexv by the operatorĤε′
v , are different up to the diffeomorphism classof loops with

different scale; however, there isonly one term surviving in
∑

a(v)∈[a(v)] < Ĥε′
v Πs|fβ >Kin

since the graphβ is fixed.
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So,M̂ is apositiveandsymmetricoperator inHDiff .

Note that the result of< η(fβ)|M̂ |η(gα) >Diff coincides with the quadratic form

QM(η(fβ), η(gα)) defined by Thiemann [gr-qc/0305080] on (a dense form domain of)

HDiff .

Hence, being the quadratic form associated withM̂, QM is closable. The closure ofQM

is the quadratic form of aunique self-adjoint operator̂M, called theFriedrichs extensionof M̂.

We relabelM̂ to beM̂ for simplicity.

In conclusion, there exists apositive and self-adjoint operatorM̂ on HDiff correspond-

ing to the master constraint.
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3. Discussion and Outlook

• Discussion

? Can one use thedirect integral decomposition(DID) of HDiff associated witĥM to

obtainHphys?

Yes, sinceM̂ is self-adjoint, and there is a separable subspace ofHDiff which is left

invariant byM̂ and captures the full physics of LQG [Thiemann, gr-qc/0510011]. Oth-

erwise one may consider a separableHDiff introduced by suitable extension of diffeo-

morphism transformations [Fairbairn and Rovelli, JMP 45(2004), 2802].

? Can oneidentifyHphys = H⊕
λ=0 with the induced physical inner product< | >H⊕

λ=0
?

Yes, since zero is in the spectrum of̂M [Thiemann, gr-qc/0510011].

? How about the issue ofquantum anomaly?

It is expected to be represented in terms of thesize ofHphys and theexistence of

sufficient semi-classical states.

? Has the master constraint program beenwell tested?

Yes, in various examples [Dittrich and Thiemann: gr-qc/0411138, gr-qc/0411139, gr-

qc/0411140, gr-qc/0411141].
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? Trouble and the way out:

Theexpression of̂M is socomplicatedthat it is difficult to obtain the DID representation

of HDiff directly.

Fortunately, the subalgebra generated by master constraints is an Abelian Lie algebra in

the master constraint algebra. So one can employgroup averagingstrategy to solve the

master constraint.

SinceM̂ is self-adjoint, by Stone’s theorem there exists astrong continuous one-parameter

unitary group,

Û(t) := exp[itM̂ ],

onHDiff . Then, given any diffeomorphism invariant cylindrical functions

ΨDiff ∈ Cyl?Diff , one can obtain algebraic distributions ofHDiff by arigging mapηphys

fromCyl?Diff toCylphys,

ηphys(ΨDiff)[ΦDiff ] :=

∫
R

dt

2π
< Û(t)ΨDiff |ΦDiff >Diff ,

which are invariant under the action ofÛ(t) and constitute a subset of the algebraic dual

of Cyl?Diff .
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• Ongoing work

? Calculate the physical inner product

It is defined formally as

< ηphys(ΨDiff)|ηphys(ΦDiff) >phys:= ηphys(ΨDiff)[ΦDiff ]

=

∫
R

dt

2π
< Û(t)ΨDiff |ΦDiff >Diff .

Calculate the integrand

< Û(t)ΨDiff |ΦDiff >Diff

= < ΨDiff | exp(−itM̂)|ΦDiff >Diff

= lim
N→∞

< ΨDiff |[exp(−itM̂
N

)]N |ΦDiff >Diff

= lim
N→∞

∑
[s1]...[sN−1]

< ΨDiff | exp[−itM̂
N

]|Π[s1] >Diff ×

< Π[s1]| exp[−itM̂
N

]|Π[s2] >Diff ×

... < Π[sN−2]| exp[−itM̂
N

]|Π[sN−1] >Diff ×

< Π[sN−1]
| exp[−itM̂

N
]|ΦDiff >Diff .
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One may consider the strategy of a possibleapproximate calculation:

< Π[s]| exp[−itM̂
N

]|Π[s′] >Diff

= < Π[s]|1− it
M̂
N
|Π[s′] >Diff +O(

1

N2)

= δ[s][s′] −
it

N
< Π[s]|M̂ |Π[s′] >Diff +O(

1

N2)

= δ[s][s′] −
it

N
QM (Π[s],Π[s′]) +O(

1

N2).

? Semiclassical analysis

Since the Hilbert spacesHKin, HDiff , and the operator̂M are constructed in such ways

that are drastically different from usual quantum field theory, one has to checkwhether

the constraint operators and the corresponding algebra have correct classical limits with

respect to suitable semiclassical states.

To do the semiclassical analysis, we still need diffeomorphism invariant semiclassical

states inHDiff . The research in this aspect is now in progress (There are positive results

in simple models [Thiemann el]).
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Quantum Gravity at BNU

• Gravity Group in Beijing Normal Univ, Beijing, CHINA

? The biggest theoretical relativity group in China: 8 professors (3 retired), around 20

graduate or doctoral students.

? Research Area: Black hole thermodynamics, Classical GR, Cosmology, High dimen-

sional gravity,Loop quantum gravity.

• LQG in Beijing Normal Univ

? Professors: Weiming Huang (Algebraic geometry, Quantum gravity), Yongge Ma

(LQG, High dimensional gravity), Thomas Thiemann (Visiting professor).

? Graduate students: You Ding, Li Qin, Li-e Qiang, Peng Xu, Jinsong Yang, Hua Zhang.

? Review article: M. Han, W. Huang, and Y. Ma,Fundamental structure of loop quantum

gravity, gr-qc/0509064. (Welcome comments and suggestions!)

• Welcome your communication and cooperation!
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Thank you!

mayg@bnu.edu.cn
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