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Plan of the talka

why?
1. why new models?
2. why orientation?
3. why a GFT derivation?

orientation-dependent/causal spin foam models

(briefly) GFT for the Barrett-Crane model

new generalised/parametrised GFTs

what next?
Focus here is on 4d BC model, but results are general
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What is the aim?

Construct a generalised formalism

for Group Field Theories

from which one can derive
orientation-dependent/causal spin foam
models

(and recover usual models as well)
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Why all this?
Why new models?

doubts on the BC model (degenerate geometries)
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Why all this?
Why new models?

doubts on the BC model (degenerate geometries)

simply: better to have a larger variety of available
models before testing them

possible: models are all equivalent if they share same
basic properties (symmetries, variables, ...)→ analysis
of models with different properties (symmetries,
causality) is interesting
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Why all this?
Why new models?

doubts on the BC model (degenerate geometries)

simply: better to have a larger variety of available
models before testing them

possible: models are all equivalent if they share same
basic properties (symmetries, variables, ...)→ analysis
of models with different properties (symmetries,
causality) is interesting

understand/make link with other approaches (causal
dynamical triangulations, causal sets, loop quantum
gravity, etc)
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Why all this?
Why new models?

doubts on the BC model (degenerate geometries)

simply: better to have a larger variety of available
models before testing them

possible: models are all equivalent if they share same
basic properties (symmetries, variables, ...)→ analysis
of models with different properties (symmetries,
causality) is interesting

understand/make link with other approaches (causal
dynamical triangulations, causal sets, loop quantum
gravity, etc)

different transition amplitudes for quantum gravity
(different spin foam models may be different
amplitudes/quantities in the same theory (as in QFT)Parametrised Group Field Theories – p. 4/2



Why all this?
Why orientation-dependent models?

quantum gravity models can differ in how they treat
geometric structures of opposite orientations (do they
distinguish them or not? are they assigned different
amplitudes?)
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Why all this?
Why orientation-dependent models?

quantum gravity models can differ in how they treat
geometric structures of opposite orientations (do they
distinguish them or not? are they assigned different
amplitudes?)

Plebanski constraints (BF theory→ gravity) have two
geometric (non-degenerate) sectors of solutions
corresponding to opposite orientations (also at
simplicial level, DePietri-Freidel, 1998)→ may want to
restrict to one
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quantum gravity models can differ in how they treat
geometric structures of opposite orientations (do they
distinguish them or not? are they assigned different
amplitudes?)

Plebanski constraints (BF theory→ gravity) have two
geometric (non-degenerate) sectors of solutions
corresponding to opposite orientations (also at
simplicial level, DePietri-Freidel, 1998)→ may want to
restrict to one

quantum BC constraints (Barrett-Crane, 1997) assign
dual irreps to triangles of opposite orientations, but BC
model does not distinguish them (same amplitudes, so
constraint is realised trivially) (not necessarily ’bad’)
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Why orientation-dependent models?

quantum gravity models can differ in how they treat
geometric structures of opposite orientations (do they
distinguish them or not? are they assigned different
amplitudes?)

Plebanski constraints (BF theory→ gravity) have two
geometric (non-degenerate) sectors of solutions
corresponding to opposite orientations (also at
simplicial level, DePietri-Freidel, 1998)→ may want to
restrict to one

quantum BC constraints (Barrett-Crane, 1997) assign
dual irreps to triangles of opposite orientations, but BC
model does not distinguish them (same amplitudes, so
constraint is realised trivially) (not necessarily ’bad’)
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Why all this?
Why orientation-dependent models?

gravity action (and therefore amplitude in formal path
integral) distinguishes between opposite orientations,
so maybe an orientation-dependent quantum gravity
model would be more directly related to a gravity path
integral (see asymptotics of Barrett-Crane model)
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Why all this?
Why orientation-dependent models?

gravity action (and therefore amplitude in formal path
integral) distinguishes between opposite orientations,
so maybe an orientation-dependent quantum gravity
model would be more directly related to a gravity path
integral (see asymptotics of Barrett-Crane model)

orientation as causality:

orientation may be ’seed’ of macro-
scopic causality at Planck scale
(see causal sets, causal dynamical
triangulations)
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Why all this?
Why orientation-dependent models?

gravity action (and therefore amplitude in formal path
integral) distinguishes between opposite orientations,
so maybe an orientation-dependent quantum gravity
model would be more directly related to a gravity path
integral (see asymptotics of Barrett-Crane model)

orientation as causality:

orientation may be ’seed’ of macro-
scopic causality at Planck scale
(see causal sets, causal dynamical
triangulations)

causal/a-causal transition amplitudes for QG
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Why all this?
Why GFT derivation?

Don’t really have a spin foam model without some sort of
derivation of the full spin foam amplitudes (lattice GT-type
or GFT)← need to specify (and justify) amplitudes for
faces, edges, etc.
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Why all this?
Why GFT derivation?

Don’t really have a spin foam model without some sort of
derivation of the full spin foam amplitudes (lattice GT-type
or GFT)← need to specify (and justify) amplitudes for
faces, edges, etc.

GFT provides a sum over 2-complexes/triangulations
(needed for full sum over histories of spin networks, gets
rid of triangulation dependence
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Why all this?
Why GFT derivation?

GFT as FUNDAMENTAL theory, of which Spin Foam
models are ’just’ Feynman graphs
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Why GFT derivation?

GFT as FUNDAMENTAL theory, of which Spin Foam
models are ’just’ Feynman graphs

GFT are a LOCAL, SIMPLICIAL, ALGEBRAIC 3rd
Quantization of Gravity (Freidel, 2005)

both geometry and topology are dynamical
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Why GFT derivation?

GFT as FUNDAMENTAL theory, of which Spin Foam
models are ’just’ Feynman graphs

GFT are a LOCAL, SIMPLICIAL, ALGEBRAIC 3rd
Quantization of Gravity (Freidel, 2005)

both geometry and topology are dynamical

spacetime emerges via interaction
(creation/annihilation) of “chunks”of space (tetrahedra)
(DePietri-Freidel-Krasnov-Rovelli, 1999)
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Why GFT derivation?

GFT as FUNDAMENTAL theory, of which Spin Foam
models are ’just’ Feynman graphs

GFT are a LOCAL, SIMPLICIAL, ALGEBRAIC 3rd
Quantization of Gravity (Freidel, 2005)

both geometry and topology are dynamical

spacetime emerges via interaction
(creation/annihilation) of “chunks”of space (tetrahedra)
(DePietri-Freidel-Krasnov-Rovelli, 1999)

Quantum Gravity as an (almost) ordinary QFT (with a
background spacetime given by the group manifold)
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Why all this?
Why GFT derivation?

GFT as FUNDAMENTAL theory, of which Spin Foam
models are ’just’ Feynman graphs

GFT are a LOCAL, SIMPLICIAL, ALGEBRAIC 3rd
Quantization of Gravity (Freidel, 2005)

both geometry and topology are dynamical

spacetime emerges via interaction
(creation/annihilation) of “chunks”of space (tetrahedra)
(DePietri-Freidel-Krasnov-Rovelli, 1999)

Quantum Gravity as an (almost) ordinary QFT (with a
background spacetime given by the group manifold)

door towards non-perturbative properties of QG using
ordinary QFT techniques
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Why all this?
Why GFT derivation?

GFT can represent unified framework for various
approaches (but details to be understood):

LQG: boundary data are SpinNets, provides physical
inner product/transition amplitudes
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Quantum Regge Calculus: if amplitude for Feynman
graphs is exp of Regge action, geometric data are
summed over
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Spin Foams: GFT Feynman amplitudes are SF models
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Why all this?
Why GFT derivation?

GFT can represent unified framework for various
approaches (but details to be understood):

LQG: boundary data are SpinNets, provides physical
inner product/transition amplitudes

Spin Foams: GFT Feynman amplitudes are SF models

Quantum Regge Calculus: if amplitude for Feynman
graphs is exp of Regge action, geometric data are
summed over

Dynamical Triangulations: if amplitude for Feynman
graphs is exp of Regge action, triangulations are
summed over

Causal Sets: GFT sums over directed graphs and
should provide orientation-dependent amplitudes
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Orientation-dependent/causal spin
foam models

Barrett-Crane model (group G = Spin(4) or G = SL(2, C),
2-complex Γ):

Z =
∑

Γ

λ(Γ)
∑
{Jf}

∏
f

∆Jf

∏
e

Ae({Jf(e)})
∏

v

ABC
v ({Jf(v)})

J = unitary irreps of G, ∆J =dimension irrepJ , f↔triangles,
e↔tetrahedra, v↔4-simplices, Γ↔ triangulation
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Orientation-dependent/causal spin
foam models

Barrett-Crane model (group G = Spin(4) or G = SL(2, C),
2-complex Γ):

Z =
∑

Γ

λ(Γ)
∑
{Jf}

∏
f

∆Jf

∏
e

Ae({Jf(e)})
∏

v

ABC
v ({Jf(v)})

J = unitary irreps of G, ∆J =dimension irrepJ , f↔triangles,
e↔tetrahedra, v↔4-simplices, Γ↔ triangulation
with:

ABC
v ({Jf(v)}) =

∏
e(v)

∫
G

dge

∏
f(v)

D
Jf

00 (ge1(f)g
−1
e2(f))

D

1

2

00

( η )
J

g

g
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Orientation-dependent/causal spin
foam models

Barrett-Crane model (group G = Spin(4) or G = SL(2, C),
2-complex Γ):

Z =
∑

Γ

λ(Γ)
∑
{Jf}

∏
f

∆Jf

∏
e

Ae({Jf(e)})
∏

v

ABC
v ({Jf(v)})

J = unitary irreps of G, ∆J =dimension irrepJ , f↔triangles,
e↔tetrahedra, v↔4-simplices, Γ↔ triangulation
with:

ABC
v ({Jf(v)}) =

∏
e(v)

∫
G

dge

∏
f(v)

D
Jf

00 (ge1(f)g
−1
e2(f))

D

1

2

00

( η )
J

g

g

DJ
00(η) =

sin
√

∆Jη√
∆J sin(h)η

=
ei

√
∆Jη

2i
√

∆J sin(h)η
− e−i

√
∆Jη

2i
√

∆J sin(h)η
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Orientation-dependent/Causal spin
foam models

Barrett-Crane model does not register orientation of
2-complex/triangulation, given by an assignment of
αe(v) = ±1 (with αe(v1) = −αe(v2)) to edges and
εf(v) = αe1αe2 = ±1 to faces
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Orientation-dependent/Causal spin
foam models

Barrett-Crane model does not register orientation of
2-complex/triangulation, given by an assignment of
αe(v) = ±1 (with αe(v1) = −αe(v2)) to edges and
εf(v) = αe1αe2 = ±1 to faces

Due to sum of two exponentials in each DJ
00(η), that

makes amplitudes real, while amplitudes for opposite
orientations should be related by complex conjugation
(dual representations); each corresponds to one
possible orientation εf of face; this is origin of cosine of
Regge action in asymptotics of 4-simplex amplitude

Parametrised Group Field Theories – p. 11/2



Orientation-dependent/Causal spin
foam models

Barrett-Crane model does not register orientation of
2-complex/triangulation, given by an assignment of
αe(v) = ±1 (with αe(v1) = −αe(v2)) to edges and
εf(v) = αe1αe2 = ±1 to faces

Due to sum of two exponentials in each DJ
00(η), that

makes amplitudes real, while amplitudes for opposite
orientations should be related by complex conjugation
(dual representations); each corresponds to one
possible orientation εf of face; this is origin of cosine of
Regge action in asymptotics of 4-simplex amplitude

Construct oriented models restricting consistently
amplitudes to include just one exponential; should give
directly exponential of Regge action; Livine-Oriti, 2002
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Orientation-dependent/Causal spin
foam models

Refined realisation based on particle analogy (Oriti, 2004):

DJ
00(gg′−1) is Hadamard propagator for particle on

group manifold, a-causal sum of two (time) oriented
Wightman functions (the two exponentials EJ

±(η)), with
mass m2 = −CJ
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00(gg′−1) is Hadamard propagator for particle on

group manifold, a-causal sum of two (time) oriented
Wightman functions (the two exponentials EJ

±(η)), with
mass m2 = −CJ

Construct oriented models by using instead Feynman
propagators on G for defining the amplitudes
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Orientation-dependent/Causal spin
foam models

Refined realisation based on particle analogy (Oriti, 2004):

DJ
00(gg′−1) is Hadamard propagator for particle on

group manifold, a-causal sum of two (time) oriented
Wightman functions (the two exponentials EJ

±(η)), with
mass m2 = −CJ

Construct oriented models by using instead Feynman
propagators on G for defining the amplitudes

Construction uses evolution kernel in proper time:

H(g, g′,m2) =

∫
R

dsK(g, g′; s) eim2s ∝ DJ
00(gg′−1),∆J = 1−

G(g, g′,m2) =

∫
R

dsθ(εs)K(g, g′; s) eim2s ∝ Em2

ε (gg′−1)
Parametrised Group Field Theories – p. 12/2



Orientation-dependent/Causal spin
foam models

Mass as true variable; can be identified with Casimir,
so CJ = ∆J + 1 = −m2, only ’on-shell’, i.e. for
Hadamard propagator; otherwise independent;
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Orientation-dependent/Causal spin
foam models

Mass as true variable; can be identified with Casimir,
so CJ = ∆J + 1 = −m2, only ’on-shell’, i.e. for
Hadamard propagator; otherwise independent;

clearer from harmonic analysis:∫
R

dsK(g, g′; s) eim2s =

∫
R

ds
∑

J

∆JDJ
00(gg′−1)ei(CJ+m2)s

→ δ(CJ + m2)DJ
00(gg′−1)→ DJ

00(gg′−1)

within sum over both J and m2;
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Orientation-dependent/Causal spin
foam models

Mass as true variable; can be identified with Casimir,
so CJ = ∆J + 1 = −m2, only ’on-shell’, i.e. for
Hadamard propagator; otherwise independent;

clearer from harmonic analysis:∫
R

dsK(g, g′; s) eim2s =

∫
R

ds
∑

J

∆JDJ
00(gg′−1)ei(CJ+m2)s

→ δ(CJ + m2)DJ
00(gg′−1)→ DJ

00(gg′−1)

within sum over both J and m2;

analogously:∫
R

dsθ(εs)K(g, g′; s) eim2s =

∫
Rε

ds
∑

J

∆JDJ
00(gg′−1)ei(CJ+

→ DJ
00(gg′−1)

CJ + m2 + iεδ
� DJ

00(gg′−1)√
∆J +

√
1−m2

+
DJ

00(gg′−1)√
∆J −

√
1−m2
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Orientation-dependent/Causal spin
foam models

Amplitudes we want to get, for given 2-complex, in full
momentum space (2 variables (J,m2) for each face):

Z(Γ) =

⎛
⎝∏

f

∑
Jf

∫
R

dm2
f

⎞
⎠∏

f

Af (Jf ,m
2
f )

∏
e

Ae(Jf(e),m
2
f(e))

∏
v

⎛
⎝∏

e

∫
G

dge(v)

∏
f(v)

D
Jf

00 (ge1g
−1
e2 )

CJf
+ m2

f

⎞
⎠

D
1

2

00

( η )
J

g

g

C+m 2

J
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GFT for BC model

Consider the field: φ(g1, g2, g3, g4) : G×4 → C
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GFT for BC model

Consider the field: φ(g1, g2, g3, g4) : G×4 → C

in momentum space
φ(g1, g2, g3, g4) =

∑
Ji

φJ1J2J3J4
k1l1...k4l4

DJ1
k1l1

(g1)...D
J4
k4l4

(g4)
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GFT for BC model

Consider the field: φ(g1, g2, g3, g4) : G×4 → C

in momentum space
φ(g1, g2, g3, g4) =

∑
Ji

φJ1J2J3J4
k1l1...k4l4

DJ1
k1l1

(g1)...D
J4
k4l4

(g4)

symmetry: φ(g1g, g2g, g3g, g4g) = φ(g1, g2, g3, g4)
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GFT for BC model

Consider the field: φ(g1, g2, g3, g4) : G×4 → C

in momentum space
φ(g1, g2, g3, g4) =

∑
Ji

φJ1J2J3J4
k1l1...k4l4

DJ1
k1l1

(g1)...D
J4
k4l4

(g4)

symmetry: φ(g1g, g2g, g3g, g4g) = φ(g1, g2, g3, g4) imposed
through the projector:
φ(g1, g2, g3, g4) = Pgφ(g1, g2, g3, g4) =

∫
dg φ(g1g, g2g, g3g, g4g)
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GFT for BC model

Consider the field: φ(g1, g2, g3, g4) : G×4 → C

in momentum space
φ(g1, g2, g3, g4) =

∑
Ji

φJ1J2J3J4
k1l1...k4l4

DJ1
k1l1

(g1)...D
J4
k4l4

(g4)

symmetry: φ(g1g, g2g, g3g, g4g) = φ(g1, g2, g3, g4) imposed
through the projector:
φ(g1, g2, g3, g4) = Pgφ(g1, g2, g3, g4) =

∫
dg φ(g1g, g2g, g3g, g4g)

define also projector Ph : Phφ(g1, g2, g3, g4) =∫
SU(2)

dh1

∫
SU(2)

dh2

∫
SU(2)

dh3

∫
SU(2)

dh4 φ(g1h1, g2h2, g3h3, g4h4
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GFT for BC model

Consider the field: φ(g1, g2, g3, g4) : G×4 → C

in momentum space
φ(g1, g2, g3, g4) =

∑
Ji

φJ1J2J3J4
k1l1...k4l4

DJ1
k1l1

(g1)...D
J4
k4l4

(g4)

symmetry: φ(g1g, g2g, g3g, g4g) = φ(g1, g2, g3, g4) imposed
through the projector:
φ(g1, g2, g3, g4) = Pgφ(g1, g2, g3, g4) =

∫
dg φ(g1g, g2g, g3g, g4g)

define also projector Ph : Phφ(g1, g2, g3, g4) =∫
SU(2)

dh1

∫
SU(2)

dh2

∫
SU(2)

dh3

∫
SU(2)

dh4 φ(g1h1, g2h2, g3h3, g4h4

Define classical theory by action:

S[φ] = 1
2

∫
dg1..dg4[Pg (Ph) φ(g1, g2, g3)]

2 −
− λ

5!

∫
dg1..dg10[PgPhφ(g1, g2, g3, g4)][PgPhφ(g4, g5, g6, g

[PgPhφ(g7, g8, g2, g9)]PgPhφ(g9, g3, g5, g10)][PgPhφ(g10, g6, g8, g
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GFT for BC model

quantum theory is defined by expansion in Feynman
graphs
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GFT for BC model

quantum theory is defined by expansion in Feynman
graphs

the sum over Feynman graphs, and the sum over
permutations, generate a sum over 2-complexes of –
all topologies –
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quantum theory is defined by expansion in Feynman
graphs

the sum over Feynman graphs, and the sum over
permutations, generate a sum over 2-complexes of –
all topologies –

each 2-complex is dual to a 4d triangulation
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GFT for BC model

quantum theory is defined by expansion in Feynman
graphs

the sum over Feynman graphs, and the sum over
permutations, generate a sum over 2-complexes of –
all topologies –

each 2-complex is dual to a 4d triangulation

expansion gives in momentum space:

Z =
∑

Γ

λ(Γ)
∑
{Jf}

∏
f

∆Jf

∏
e

Ae({Jf(e)})
∏

v

ABC
v ({Jf(v)})

Parametrised Group Field Theories – p. 16/2



GFT for BC model

quantum theory is defined by expansion in Feynman
graphs

the sum over Feynman graphs, and the sum over
permutations, generate a sum over 2-complexes of –
all topologies –

each 2-complex is dual to a 4d triangulation

expansion gives in momentum space:

Z =
∑

Γ

λ(Γ)
∑
{Jf}

∏
f

∆Jf

∏
e

Ae({Jf(e)})
∏

v

ABC
v ({Jf(v)})

with A1
e (DP-F-K-R version) or A2

e (P-R version)
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New parametrised GFT

Ingredients:
1) group elements↔ irreps of G, proper time parameter↔
mass variable
→ field theory over group manifold with extra proper time
independent coordinate and a variable mass (conjugate to
proper time) (Fock, Feynman, Nambu, Stueckelberg,...)
2) orientation data α (tetrahedra) and ε = α1α2 (triangles)

Parametrised Group Field Theories – p. 17/2



New parametrised GFT

Ingredients:
1) group elements↔ irreps of G, proper time parameter↔
mass variable
→ field theory over group manifold with extra proper time
independent coordinate and a variable mass (conjugate to
proper time) (Fock, Feynman, Nambu, Stueckelberg,...)
2) orientation data α (tetrahedra) and ε = α1α2 (triangles)

Consider the field:
φ(g1, s1; g2, s2; g3, s3; g4, s4) : (G× R)×4 → C
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New parametrised GFT

Ingredients:
1) group elements↔ irreps of G, proper time parameter↔
mass variable
→ field theory over group manifold with extra proper time
independent coordinate and a variable mass (conjugate to
proper time) (Fock, Feynman, Nambu, Stueckelberg,...)
2) orientation data α (tetrahedra) and ε = α1α2 (triangles)

Consider the field:
φ(g1, s1; g2, s2; g3, s3; g4, s4) : (G× R)×4 → C

momentum space: φ(g1, s1; g2, s2; g3, s3; g4, s4) =

=
∑

Ji

∫
R

dm2
1..dm2

4 φJ1J2J3J4
k1l1...k4l4

(m2
1, ..,m

2
4)

DJ1
k1l1

(g1)..D
J4
k4l4

(g4)e
im2

1s1 ..eim2
4s4
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New parametrised GFT

usual symmetry:
φ(g1g, s1; g2g, s2; g3g, s3; g4g, s4) = φ(g1, s1; g2, s2; g3, s3; g4, s4)
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φ(g1g, s1; g2g, s2; g3g, s3; g4g, s4) = φ(g1, s1; g2, s2; g3, s3; g4, s4)

use also same simplicity projector Ph

and define operator Ps:
Psφ(g1, s1; g2, s2; g3, s3; g4, s4) =∫

R
ds θ(s) φ(g1, s1 + s; g2, s2 + s; g3, s3 + s; g4, s4 + s)

Parametrised Group Field Theories – p. 18/2



New parametrised GFT

usual symmetry:
φ(g1g, s1; g2g, s2; g3g, s3; g4g, s4) = φ(g1, s1; g2, s2; g3, s3; g4, s4)

use also same simplicity projector Ph

and define operator Ps:
Psφ(g1, s1; g2, s2; g3, s3; g4, s4) =∫

R
ds θ(s) φ(g1, s1 + s; g2, s2 + s; g3, s3 + s; g4, s4 + s)

Denote φα(g1, s1; g2, s2; g3, s3; g4, s4) such that
φ+(g1, s1; g2, s2; g3, s3; g4, s4) = φ(g1, s1; g2, s2; g3, s3; g4, s4)
and
φ−(g1, s1; g2, s2; g3, s3; g4, s4) = φ†(g1, s1; g2, s2; g3, s3; g4, s4)
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New parametrised GFT

Consider the action (φgs = PgPhPsφ):

S[φ] =
∏

i

∫
G

dgi

∫
R

dsi

{Pg(Ph)Psφ
−(gi, si) (

∏
i (i∂si

+∇i)) Pg(Ph)Psφ
+(gi, si)+

+ Pg(Ph)Psφ
+(gi, si) (

∏
i (−i∂si

+∇i)) Pg(Ph)Psφ
−(gi, si)}

+
∑

{αi}=± λ{αi}
∏∫

G
dgi

∫
R

dsi

{
φα1

gs (g1
i , s

1
i )φ

α2
gs (g2

i , s
2
i )φ

α3
gs (g3

i ,

φα4
gs (g4

i , s
4
i )φ

α5
gs (g5

i , s
5
i )

∏
i<j θ(αei

αej
(sij − s̃ij)) K(gij, g̃ij; sij −

λ+++++ = λ∗
−−−−−, λ++++− = λ∗

−−−−+, λ+++−− = λ∗
−−−++
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New parametrised GFT

Full amplitude for given 2-complex:

Z(Γ) =

⎛
⎝∏

f

∑
Jf

∫
R

dm2
f

⎞
⎠∏

f

∆Jf

∏
e

Ãe(Jf(e),m
2
f(e))

∏
v

⎛
⎝∏

e

∫
G

dge(v)

∏
f(v)

iεfD
Jf

00 (ge1g
−1
e2 )

CJf
+ m2

f + iεfδ

⎞
⎠

with

Ã1
e =

⎛
⎝∏

f(e)

1

CJf
+ m2

f

⎞
⎠A1

e Ã2
e =

⎛
⎝∏

f(e)

1

CJf
+ m2

f

⎞
⎠ f(m2

fi
)A2

e
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New parametrised GFT

These parametrised GFTs generalise usual ones because
of presence of extra variables si (m2

i )→ reduce to usual
ones if no dependence on them

less trivial:
DP-F-K-R version of BC model recovered if: 1) drop
dependence on orientation data in vertex term (no Theta
functions); 2) go to ultra-static case:
(i∂s +∇)δ(g, g′)δ(s, s′)→ δ(g, g′)δ(s, s′)

P-R version is (almost) recovered in the same way
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What now?

play around with symmetries of field (for the
s-dependence), and with definition of the action, study
resulting models and restrict possibilities
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What now?

play around with symmetries of field (for the
s-dependence), and with definition of the action, study
resulting models and restrict possibilities

analyse in detail properties of these models (e.g.
convergence)

(quantum) geometry of parametrised GFT:
parametrised quantum tetrahedron

(quantum) geometry of parametrised GFT: understand
if and how exactly the exponential of the Regge action
comes out as quantum amplitude

(quantum) geometry of parametrised GFT: analyse
measure and encoded constraints on triangle areas
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What now?

(quantum) geometry of parametrised GFT: if Regge
action comes out, is there an interpretation of
amplitude before s-integration in terms of a simplicial
action? ’parametrised Regge action’?
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What now?

(quantum) geometry of parametrised GFT: if Regge
action comes out, is there an interpretation of
amplitude before s-integration in terms of a simplicial
action? ’parametrised Regge action’?

(quantum) geometry of parametrised GFT: geometric
interpretation of extra variables si and m2

i ???

make good use of improved similarity with usual QFT
because of derivatives in the action

apply to 3d (Ponzano-Regge) case and study what
changes of known results
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What now?

If really exponential of Regge action comes out directly as
amplitude, or in some limit, then really GFT can be seen as
a general framework for most approaches to
Non-Perturbative Quantum Gravity
⇓
Loop Quantum Gravity, Causal Dynamical Triangulations,
Causal Sets, Quantum Regge calculus
⇓
It’s time to study how it reduces to each of them, their
relationships and differences, extablish solid links,
construct bridges, understand role and usefulness of each
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