Causal Parametrices and Lorentzian spectral geometries without a classical time loops05,AEI, Oct. 13, 2005

Mario Paschke

paschke@mis.mpg.de

Max Planck Institut für Mathematik in den Naturwissenschaften

Motivation

Ultimate Aim: Does the dynamical coupling of quantum fields to geometry lead to a noncommutativity of spacetime ? Strategy: Generalizing The notion of generally covariant quantum theory develop (and study) a notion of "local" quantum physics over (possibly) noncommutative spacetimes.

First step: Find a suitable notion of noncommutative spacetimes, which should be such that

- The Dirac-, resp. Klein-Gordon equation admit a well posed initial value problem.
- There should be a well-defined concept of isometric (...) embeddings (and hence also diffeomorphisms) of such spacetimes into each other.
- There exist appropriate notions of "causality" and "microlocal analysis".

Plan of the talk

- 1 NCG-preliminaries I and II
- 2 LOST ("Lorentzian Spectral Triples")
- 3 stably causal LOST
- 4 Ghyst ("Globally HYperbolic Spectral Triples")
- 5 outlook

NCG-Preliminaries I

By the Gelfand-Naimark Theorem non-compact spaces correspond to nonunital (pre-) C^* -algebras, \mathscr{L} , e.g.

$$\mathscr{L} = C_0^{\infty}(M), \ C_c^{\infty}(M), \ \mathcal{S}(M), \ L_{\infty}^p(M), \ldots$$

To describe Vector-bundles, like spinors, differential forms etc. one needs a "preferred unitalization" $\tilde{\mathscr{L}}$ of \mathscr{L} (corresponding to some compactifaction of M.), e.g. $\tilde{\mathscr{L}} = \mathcal{B}^{\infty}(M)$.

Vector-bundles are then given as \mathscr{L} -pullbacks of finitely generated projective $\mathscr{\tilde{L}}$ -modules, i.e. they are given by \mathscr{L} -modules of the form $\mathscr{L} \cdot \mathcal{E}$, where

$$\mathcal{E} = \tilde{\mathscr{L}}^N p, \qquad p \in M_N(\tilde{\mathscr{L}}), \qquad p^2 = p = p^*.$$

Note that elements $a \in \mathscr{L}$ can be used to localize objects on M (in particular if $\mathscr{L} = C_c^{\infty}$).

E.g. if *D* is a differential operator of order 1, then aD will be a differential operator of order 1 with support in supp(a) (with a discrete spectrum).

NCG-Preliminaries II

Consider the Dirac-Operator *D* on some *d*-dim. Lorentzian Spin-manifold (M, g, σ) . Schematically it is in every point of $M D = i\gamma^{\mu}\partial_{\mu} + \chi$ where $\gamma^{\mu}\gamma^{\nu} + \gamma^{\nu}\gamma^{\mu} = 2g^{\mu\nu}$. Note that $(\gamma^i)^* = \gamma^i$ but $(\gamma^0)^* = -\gamma^0 =: -\beta$.

 $D^* = \beta D\beta \text{ globally!}$

• The operator
$$\langle D \rangle^2 := \frac{1}{2} \left(D D^* + D^* D \right)$$
 is locally of the form

$$\langle D \rangle^2 = -\tilde{g}^{\mu\nu} \partial_\mu \partial_\nu + \text{lower order terms}$$

where $\tilde{g}^{\mu\nu}$ is a *Riemmanian metric* on *M*. Hence $\langle D \rangle^2$ is elliptic and in particular every eigenvalue has only a finite degeneracy.

In fact

$$Tr_{\omega}(a\langle D\rangle^{-d}) := \lim_{N \to \infty} \frac{1}{\log N} \sum_{n=1}^{N} \mu_n(a\langle D\rangle^{-d}) \propto \int a \mathrm{d}\nu_g \qquad \forall a \in L^1(M,g)$$

independent of the choice of β .

(Here $\mu_n(A)$ denote the characteristic values of the operator A.)

LOST

A Lorentzian spectral triple of dimension d = n + 1 is an ordered collection

$$\boldsymbol{L} = (\mathscr{L} \subset \tilde{\mathscr{L}}, \mathcal{H}, D, \beta, J, \gamma)$$

of 7 objects, in particular required to fullfill the following conditions:

 $\begin{array}{l} \mathcal{H} \text{ is a Hilbert space,} \\ \mathscr{L} \subset B(\mathcal{H}) \text{ is a non-unital pre-}C^*\text{-algebra,} \\ \widetilde{\mathscr{L}} \subset B(\mathcal{H}) \text{ a unitalization of } \mathscr{L}. \\ [\beta, \mathscr{L}] = 0 \text{ and } \beta^* = -\beta \text{ and } \beta^2 = -1. \\ D: \operatorname{dom}(D) \to \mathcal{H} \text{ is a } \beta\text{-selfadj. op.,} \\ [D, a], [\langle D \rangle, a] \text{ and } [\langle D \rangle, [D, a]] \text{ are bounded } \forall \ a \in \mathscr{R}. \end{array}$

The space

$$\mathcal{H}^{\infty} = \bigcap_{k} \operatorname{dom}(D^{k})$$

is the \mathscr{L} -pullback of a finitely generated projective $\tilde{\mathscr{L}}$ -module.

For all $a \in \mathscr{L}$ the operators $a\langle D \rangle^{-d}$ are compact and $0 < \operatorname{Tr}_{\omega}(a\langle D \rangle^{-n}) < \infty$.

still LOST

J is an anti-unitary operator on \mathcal{H} and $\gamma \in \mathscr{L}'$, fulfilling the relations:

 $J\mathscr{L}J\subset \mathscr{L}',$

+ (anti-)commutation relations between γ , J, and β

$${igstar}\ D{m \gamma}=(-1)^n{m \gamma} D,$$
 and

Thm Each Lorentzian Spin-manifold determines (not uniquely) a LOST.

Conversely, if L is a LOST with $\mathscr{L} = C_c^{\infty}(M)$ for some finite-dimensional C^{∞} -manifold M, and $\tilde{\mathscr{L}} = \mathscr{B}^{\infty}(M)$, then L determines uniquely a Lorentzian Spin-manifold $M = (M, g, \sigma)$.

Remark: The metric is reconstructed as

$$g(da, db) = \frac{1}{2} \{ [D, a], [D, b] \}.$$

LOST for Moyal

Let $\Theta^{\mu\nu}$ be a skew-symmetric, nondegenerate 4×4 -matrix. We define the algebra $\mathcal{S}_{\Theta}(\mathbb{R}^4)$ as the vector space $\mathcal{S}(\mathbb{R}^4)$ of smooth functions of rapid decay on \mathbb{R}^4 , equipped with the $*_{\Theta}$ -product

$$(f *_{\Theta} g)(x) = \frac{1}{\pi^4 \det \Theta} \int \int f(x+s)g(x+t) \exp\{-2is\Theta^{-1}t\} d^4t d^4s$$

Note that the $*_{\Theta}$ -product can be extended to $\mathcal{B}^{\infty}(\mathbb{R}^4)$ (Gayral et al.).

- $\mathcal{S}_{\Theta}(\mathbb{R}^4)$ can now , via the $*_{\Theta}$ -product, be represented on $L^2(\mathbb{R}^4, \mathbb{C}^4)$.
- \blacksquare Using the Tomita-Takesaki Theorem one can then construct an appropriate operator J.
- **D** Together with the usual (i.e. "commutative") operators γ , β and $D = i\gamma^{\mu}\partial_{\mu}$, these data can be shown to fullfill the axioms for a LOST.

We shall call this example the Moyal-deformed Minkowski spacetime.

Stably causal LOST

Recall that a Lorentzian manifold (M, g) is called stably causal if there exists a function f on M, such that in every point of M one has g(df, df) < 0. f can then be used to define a global time coordinate t.

Definition: A LOST L is called stably causal if

There exists a selfadjoint operator ∂_0 on ${\mathcal H}$ such that

 $[\partial_0, a] \in \tilde{\mathscr{I}} \quad \forall a \in \tilde{\mathscr{I}} \qquad \left(\Rightarrow \mathcal{H}^\infty \subseteq \bigcap_k \operatorname{dom} \partial_0^k \right).$

There exists a unitary element $u\in ilde{\mathscr{L}}$ such that

$$[\partial_0, u] = iu = -\beta[D, u]$$

 $u^{\alpha} \in \tilde{\mathscr{L}} \text{ for all } \alpha \in \mathbb{R} \qquad (\Rightarrow \operatorname{spec}(\partial_0) = \mathbb{R}).$

Remark: Thus, in the classical case, $g(dx^0, dx^0) = [D, x^0]^2 = \beta^2 = -1$ with $u =: e^{ix^0}$.

more stably causal LOST

Remark:

The Moyal-deformed Minkowski spacetime is stably causal. For $\Theta^{0i} \neq 0$ one has $[t, S_q^2] \neq 0$.

Obviously ∂_0 generates a one-paramter family of automorphisms of $\tilde{\mathscr{L}}$, i.e. a "time flow". Setting $U_t := e^{i\partial_0 t}$ they are $\alpha_t(a) = U_t a U_{-t}$.

Of course, if they exist at all, there are (in general) infinitely many pairs (∂_0, u) admissable for the data of a given LOST *L*, corresponding to the different foliations. Set

 $\mathcal{T}_{\boldsymbol{L}} := \{ U_t = e^{i\partial_0 t} \mid (\partial_0, u) \text{ admissable for } \boldsymbol{L} \}$

Remark: Given one pair (∂_0, u) , individual members of \mathcal{T}_L are of the form $U_t = V e^{i\partial_0 t} V^*$. Where the unitaries V on \mathcal{H} fullfill in particular $V \mathscr{L} V^* \subset \mathscr{L}$ and $V D V^* = D$.

Lost – compactness

Definition: Let

 $V := \{ \psi \in \mathcal{H}^{\infty} \mid \operatorname{supp}_{t} \langle \psi | U_{t} \psi \rangle \text{ is compact } \forall U_{t} \in \mathcal{T}_{L} \}.$

 $\mathcal{H}_c^{\infty} := \{ \psi \in V \mid \text{ supp}_t \langle \psi | U_t \varphi \rangle \text{ is compact } \forall U_t \in \mathcal{T}_L, \ \varphi \in V \}.$

(In the commutative case, elements of \mathcal{H}_0^∞ correspond to Spinors of compact support.) $\Rightarrow \mathscr{L}\mathcal{H}_0^\infty \subset \mathcal{H}_0^\infty$ and $D\mathcal{H}_0^\infty \subset \mathcal{H}_0^\infty$

to precede (Ghysts)

Definition:

Let $(\mathcal{H}_0^{\infty})'$ be the space of linear continuous functionals on \mathcal{H}_0^{∞} . Given two elements $\xi, \eta \in (\mathcal{H}_0^{\infty})'$, we say that ξ precedes $\eta, \eta \prec \xi$ if and only if, for every $\psi \in \mathcal{H}_0^{\infty}$ such that for all $U_t \in \mathcal{T}_L$ one has (pictorially)

 $I^+(\text{supp }\eta)$

Analogously one defines a notion of succeeding, $\eta \succ \xi$.

to causally propagate (Ghysts)

Given a (stably causal) LOST $L = (\mathscr{L} \subset \tilde{\mathscr{L}}, \mathcal{H}, D, \beta, J, \gamma, (\partial_0, u))$ we can now seek for maps

 $E:\mathcal{H}_0^\infty\to (\mathcal{H}_0^\infty)'$

fullfilling the equation " $D(E\psi) = \psi$ " for all testfunctions $\psi \in \mathcal{H}_0^{\infty}$, resp.

 $\langle E\psi, D\varphi \rangle = \langle \psi, \varphi \rangle \qquad \quad \forall \psi, \varphi \in \mathcal{H}_0^\infty.$

Maps E^{\pm} of this type, which additionally obey

 $\psi \succ E^+\psi$ resp. $\psi \prec E^-\psi$ $\forall \psi \in \mathcal{H}_0^\infty$

will be called the advanced (resp. retarded) Parametrices of D.

Remark: Such maps E, E^{\pm} do not exist on every Lorentzian manifold, and if they exist, they are usually not unique. On globally hyperbolic spacetimes they exist uniquely.

Ghysts

Definition:

A globally hyperbolic spectral triple is a stably causal LOST L such that there exist uniquely determined advanced and retarded Parametrices E^{\pm} .

Remark:

- Thus every globally hyperbolic Spin-manifold gives rise to a Ghyst.
- The Moyal deformed Minkowski spacetime is a Ghyst
- Spectral quadruples (with a commutative time) give rise to Ghysts.

Outlook

One could try to find (necessary and) sufficient conditions for a stably causal LOST to be a Ghyst.

E.g. if $H := D - \beta \partial_0$ is essentially selfadjoint, the existence and uniqueness of the causal parametrices can be (constructively) proven.

However, even on classical globally hyperbolic spacetimes the Dirac-Hamiltonian is rarely essentially selfadjoint (for generic foliations).

- One should try to reformulate the axioms for Ghysts by only using the causal parametrices rather than the extremly unwieldy operators $\langle D \rangle$.
- Generalize more tools/concepts from Microlocal Analysis to our setup. (E.g. "Bicharacteristics")
- Infer the geodesic distance directly from E^{\pm} (à la Hadamard).
- Find more examples (Isospectral deformations, q-deformations, κ -deformaed Minkowski spacetime, The DFR-quantum spacetime...)
- enter QFT.....