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Abstract

The Unified approach to investigation of dynamics of the cosmological models with
dark energy is presented. We have proposal to use the potential function in the
hamiltonian formulation of FRW dynamics as a probe of different dark energy mod-
els. The potential function can be also reconstructed from SNIa data. We discuss
how many of effential parameters of the models are statisticaly significant in means
of the Akaike and Bayesian informative criteria. We show that the hierarchy of
cosmological models can be established in the ensemble of dark energy models by
informative criteria. We argue that SNIa data support that the number of essential

parameters (or the dimension of phase space) is two, i.e. (Hp,Qm.0).

Preprint submitted to Elsevier Science 13 July 2005



* V-reconstruction method—a direct and inverse problem
in the quintessential cosmology

Particle-like description of FRW cosmology

We start from the Friedmann-Robertson-Walker (FRW) models filled with perfect
fluid with the equation of state p = w(a)p, where p and p are its pressure and energy
density. We assume that the coefficient w in the equation of state is parameterized
by scale factor a. The basic dynamical equation in this problem (called as a direct
dynamical problem) constitute two equations

= —=(p+3p) (1)
=—-3H(p+p) (2)

The first equation is a consequence of the Rauchaudhuri equation while the second
one the conservation condition.

Then we can reduce equation (1) to the form analogous to the Newtonian equa-
tion of motion for a particle moving in one-dimensional potential V (a)

b= 3)
where
V(a) = {—13~ /(p + 3p)ada | (4)

is the potential function and the scale factor a plays the role of a positional variable
in the configuration space {a:a > 0}.
The integration of (4) by parts gives

Vi) = 75 |+ 30 = [ @alo+3)| = L [0+ 3900~ 300+ p1?]. (3
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» V-reconstruction method—a direct and inverse problem
in the quintessential cosmology

Particle-like description of FRW cosmology

We start from the Friedmann-Robertson-Walker (FRW) models filled with perfect
fluid with the equation of state p = w(a)p, where p and p are its pressure and energy
density. We assume that the coefficient w in the equation of state is parameterized
by scale factor a. The basic dynamical equation in this problem (called as a direct
dynamical problem) constitute two equations

S = —Z(o+3p) (1)
p=—3H(p+p) (2)

The first equation is a consequence of the Rauchaudhuri equation while the second
one the conservation condition.

Then we can reduce equation (1) to the form analogous to the Newtonian equa-
tion of motion for a particle moving in one-dimensional potential V (a)

a=-27 Q
where
V() = ¢ [(r+3p)ada (4)

is the potential function and the scale factor a plays the role of a positional variable
in the configuration space {a:a > 0}.
The integration of (4) by parts gives

V(a) = 1% [(p + 3p)a’ — fﬂzd(p + 310)} = 11—2 [(0+3p)a® - 3(p+p)a®]. (5)



The last term in (5) can be obtained in the exact form if we rewrite (2) to the
equivalent form

a’dp = d[(p + p)a’] (6)

Finally, we obtain the potential in terms of (effective) energy density in the form
(modulo an arbitrary constant)

R
V(e) = -£a’ | (7)

and the function of energy is preserved

a? k
5=~§+V(a)=—§ (8)

where k is a constant of curvature. Note that the function V'(a) plays role of the
potential for a fictitious particle of unit mass which mimics the evolution of the
universe. The Hamilton function is

H(pa,a) = %pg + V(a). (9)

The motion of the system is restricted to the level H = 0, if we include the curvature
contribution in peg.

Therefore, if we consider the FRW dynamics for the universe filled with fluid
with the general form of the equation of state factor w(a(2)) = p/p then dynamics
can be reduced to the two-dimensional dynamical system

G=1% (10)
oV ;
& (11)

where V'(a) is given by (7) and Friedmann first integral (8) is the first integral of
(10)-(11). The potential V(a) identifies the model under consideration.

System (10)-(11) has critical points at 2o = 0 and a = ag: §& |4 and V(ag) =
0. It represents the static Einstein universe. The domain admissible for motion is
{a:V(a) < 0}.

Note that the localization of the critical points as well as its character is deter-

mined from the geometry of the potential function only. The linearization of system
(10)-(11) in the neighbourhood of the critical point gives

T =

0%V oV
t=——| ¢ o d=-—5| (a-—ao). (12)
. 0 . 0a? |,
Because the eigenvalues of the linearization matrix Ay = =£4/— %T;’ 0o CAT

be real of opposite signs or purely imaginary, then a saddle or a centre are only
admissible, respectively.

From the reconstruction of SNIa data we obtain that V(a) is a upper convex

function. Therefore, the system is structurally stable.



Reconstruction of the potential V(a) from distant supernovae

Further in this section we use the flat model (k¥ = 0) since the evidence for this
case is very strong in the light of WMAP data. For our aims it would be useful to
rearrange the Friemann first integral to the form giving the Hubble function

H(z) = V=2V{a(2)) (1 + 2% = 4 [ BF (13)

where we express in terms of redshift (1 + z) = a~1.

To confront the theoretically assumed potential V' with SNIa data we calculate
the luminosity distance in the standard way

dr(z) = (1 + 2) /% (14)

Because we are going to reconstruct V' (a) and compare its form with the theo-
retically suggested one, it would be useful to take the inverse of formula (14)

Hit) = [% (?LSH_I. (15)
Hence '
Vi) )= _%(1 +2)? {% (‘fL—f’-ZZ)] - (16)

In the search for different dark energy models the method of reconstruction of
w(z) is very popular. There are many problems with the realization of this idea
because of the smearing effect

Our key idea is to use the potential V' (a) (or effective energy density) instead of
w(z) for the characterization of dark energy models. We presented this procedure
and it was applied to the case of the model with Chaplygin gas and the Cardassian
model

The main advantage of using the V-method is the enclosing of all information
about the dynamics in the geometry of the potential function. Hence, the energy

density peg(2) can be simply obtained from V' (z). The effectiveness of the V-method
will be demonstrated in the next section.

3. Potential function from SNIa data

In the statistical analysis the Knop et al.’s sample of distant supernovae type Ia data
was used . Figure 1 shows the potential function reconstructed directly from the
data with denoted regions of levels of uncertainties 1o and 20. Given the potential
we can obtain immediately the phase portrait (Fig. 2).

Let us summarize the theoretical and practical advantages of using V method. First,
all information about the dynamics is included in the geometry of a single potential



calculations like the tunnelling amplitude from the Gamov formula can be done.

Second, from the potential function is always possible to extract the information
about the matter content from the following formula p(t) = —6Va 2, p(t) = 2V (1 +
Iv(a))a=2, w(a(z)) = —(A+Iv(a(2))) /3. where I (a) = dln V/dIn aisthe elasticity
coefficient of the potential function with respect to the scale factor.

_Third, many investigations allows to find the constraint on the coefficient wx
of dark energy component X from the distant supernovae data . Because of the
smearing effect coming from the presence of the double integrals relating w(z) to the
luminosity distance dr. It is extremely hard to constraint the wx. We propose B
the potential function instead of wx for probing the dark energy because in this
case wy is expressed by only a single integral. Therefore it is easier to obtain this
kind of constraints. It is the main practical advantage.

Fourth, in the reconstruction V' (z) we fit the polynomial function, however, if one
can demonstrate that V' method is not sensitive on the choice of parameterization of
w(z) . In all cases we obtain the diagram of function V(a) which is upper convex.

Fifth, the maximum of the potential function represents the important moment
during the evolution of the Universe when the transition from the decelerating to
accelerating phase takes place. It is interesting that the value of redshift at this
moment can be estimated from the SNIa data with good accuracy

Let us consider the potential function of class C2. Apart from the reconstructed
potential from observational data we can obtain such a potential for theoretical
models of dark energy. In the class of potential one can introduce the distance
d(X,Y) = |X — Y| with the help of norm defined as

[| X || = max {sup | X (a)|,sup |0X (a)/dal,sup |'82X(a)/6a2|}
acl acl acl

where I is the assumed interval of redshift.

The space of all dark energy models equipped with such a metric is the Banach
space

Let V be the best fit potential reconstructed from the SNIa data. Using this
metric we can measure the distance of every potential from the theory to the po-
tential V. The space of all models with dark energy is the Banach space with well

defined distance between the models. This space has natural topology defined with
the help of the metric.
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Fig. 1. The potential function for the reconstructed best fit model is given by a solid line. Around
it the confidence regions 1¢ and 2o are given.

0.4

X

Fig. 2. The phase portrait from the reconstructed potential. The saddle type of critical point
represent the Einstein static universe. The shaded region represents the accelerating domain.

function. It is obvious for the whole class of FRW models filled with fluid satisfying
the equation of state in the form p = w(a(z))p. The fact that its dynamics can
be reduced to motion of the single particle in the one-dimensional potential can
be a starting point of the further analysis exploring this analogy. Moreover, some
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case | name of model H(z) free parameters d
0 | Einstein-de Sittér &= Hg\/Qm,O(]. + 2)% + Qi o(1 + 2)? Hy, Qo 2
1 | ACDM H= HOVme‘Q(]. +2)3 + Qo(l +2)2+ O Hy, 2 0, £24 3
2 | TDCDM H = Hoy/Qmo(1 + 2)? + Qeo(1 + 2)2 + Qro(1 + 2) Hy, Qm,0, 1,0 3

3a | PhCDM, w = —% H= HD\/Qm,O(l + 2)3 4+ Qe o(1 + 2)% + Qpp o1 + 2)30+w) Ho, Qm o, Qpno 3
3b | PhCDM, w - fitted Ho, Qi 0, S2pp,o, w 4
4a | BACDM, n =6 H= ffo\/ﬂm,ﬂfl +2) + Qpo(1+ 2)2 — Quo(l + 2)" + O Ho, D0, 0, 4
4b | BACDM, n - fitted Ho, @m0, Qno, Qpsm 5
5a | BPhCDM, n =6 H= Ho\/Qm,g(l +2)3 4+ Qi o(1+2)2 = Qo1+ 2)" + Qppo(l +2)71  Ho, Vo, o, Wpno 4
5b | BPhCDM, n — fitted | | Ho, Qm 0, 00, pro,n 5
6 | BrACDM, n =6 H = HO‘\/Qm,O(]- +2)3 + Qe o(l + 2)2 + Qrao(l +2)" + G4 Hy, 0, 0BRA0, 20 4
7a |DEQS, wy = —1,| H= ffg\/ﬂm,o(l +2)3 + Qe o(1 + 2)2 + Qx o(1 + 2)3(wo—wrtl)gdwrz Hoy, Qi 0, 2x,0, 1U1‘ 4
px = (wo +w12)px
7o | DEQS, wy = fitted, Ho, im0, Sdx,0, wo, wy 5

px = (wo + w1 2)px

Table 1. The Hubble function versus redshift for the seven evolutional scenarios of the FRW models with dark energy.



Which cosmological model with dark energy

— phantom or ACDM?

Wiodzimierz Godlowski?® and Marek Szydlowski 2
# Astronomical Observatory, Jagiellonian University, Orla 171, 30-244 Krakéw,
Poland

b Complex Systems Research Centre, Jagiellonian University, Reymonta 4, 30-059

Krakéw, Poland

Abstract

In cosmology many dramatically different scenarios with the past (big bang versus
bounce) and in the future (de Sitter versus big rip) singularities are compatible
with the present day observations. This difficulty is called the degeneracy problem.
We use the Akaike and Bayesian information criteria of model selection to overcome
this degeneracy and to determine a model with such a set of parameters which gives
the most preferred fit to the SNIa data. We consider seven representative scenarios,
namely: the CDM models with the cosmological constant, with topological defect,
with phantom field, with bounce, with bouncing phantom field, with brane and
model with the linear dynamical equation of state parameter. Applying the model
selection information criteria we show that AIC indicates the flat phantom model
while BIC indicates both flat phantom and flat ACDM models. Finally we conclude
that the number of essential parameters chosen by dark energy models which are

compared with SNIa data is two.

Preprint submitted to Physics Letters B 12 July 2005
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Table 2

The values of AIC and BIC for distinguished models (Table 1) both for flat and

non-flat model.

case | AIC (0=0) AIC (R0 #0) BIC (uo=0) BIC (Qo+0)
0 325.5 194.4 328.6 200.5
1 179.9 179.9 186.0 189.0 &= /\CD/A
2 183.2 180.1 180.4 194.4 :Ph, C b /U\ 'lg-?
3a 178.0 179.3 184.1 188.5 / ‘Fm
3b 178.5 179.7 187.7 191.9
4a 181.9 181.6 191.1 193.8 B owem
4b 183.9 183.6 196.2 108.8 m od
5a 180.0 181.3 180.2 103.5
5b 182.0 183.3 194.4 108.5
6 180.3 181.9 189.4 194.1
Ta 179.8 181.6 188.9 193.8
b 180.5 182.0 192.7 197.3
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Table 2

The values of AIC and BIC for distinguished models (Table 1) both for flat and

non-flat model.

case | AIC (R0=0) AIC (o#0) BIC (ko =0) BIC (R 0)
0 325.5 194.4 328.6 200.5
1 179.9 179.9 186.0 189.0
2 183.2 180.1 189.4 194.4
3a 178.0 179.3 184.1 188.5
3b 178.5 179.7 187.7 191.9
4a 181.9 181.6 191.1 193.8
4b 183.9 183.6 196.2 198.8
5a 180.0 181.3 189.2 193.5
5b 182.0 183.3 194.4 198.5
6 180.3 181.9 189.4 194.1
Ta 179.8 181.6 188.9 193.8
b 180.5 182.0 192.7 197.3
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Fig. 3. The value of BIC in respect to fixed value ¢ for three flat models (with

topological defect, with the cosmological constant and with phantom) with only one
parameter Hy estimated, |




Table 3

‘The values of AIC and BIC for distinguished models (Table 1), with priors Qo =

0.3 both for flat and non-flat model.

case | AIC (Qo'=0)" AIC (Q40#0) BIC (o=0) BIC (o 0)

0 = 216.9 = 920.0

1 177.9 179.9 181.0 186.0

2 190.0 178.8 193.0 184.9

35, 183.9 179.6 187.0 186.7

3b 179.9 178.2 186.0 187.4

da 179.9 181.9 186.0 191.0

4b 181.9 183.9 191.1 196.1 _&
Ba 185.9 181.6 192.0 190.7

5b 187.9 183.6 197.1 195.8

6 179.5 180.1 185.6 189.3

Ta 179.7 179.6 185.8 188.7

7b 179.2 180.2 188.4 192.4

£ deH
ACDM

lked
w is Qtted

B ACDM
model

w=- Y5
2




CQ [ lzg;[ .81 & PN

' SWWW'J%C%%&??? ged . %ﬂ

. The fwrufc,eo apprach 0"

dyno/mics of cosmologiond models
with dark enemgy com be given

. We owm discuss properties oﬁ
)/'na/mm m terms of simgle
potemtiol function of the
Newtomiom type Hamitt S)_fshams

—ISNTa A g ST

1r:-,“e@,,,,,(;,,ﬂﬂ of the Amiverses or

their evolutiomal NScem@aious
From meodh, poimt cci view 1 is
B@n@g&/spac@ whi c@un be u .
O SI's deracnfs

Odeé@r |
—7’”{,_&_0 gzrmewwe/r %ea_e% at %CDM(GEO
1S %‘l‘/rudnwaﬂ)/ Ateble. or mepezr‘ly

s eoan—hm dark energy (m'term
cﬁl /é\ap(/rwﬁt IS q&n@rlcr







OAFWC‘ZQD/VI mod (mweu ggﬂgg,% '
fnod@ls with oumcé’ya‘/r?,/ '
structurally umstable =

bounce is mot gemeric properx
of The evolutional scenario

in the ensemble of dar k
energy, models
A} Q)/Pe)\ moddﬁ k=0 +¢Ojea‘[‘0evj

cenrre
7o

E , a

| Becavse the \presence

contre (fnomb n. ont. point
g igSfZ/m = eJC/rucE B’ngﬁ)ﬁ &




