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I. GENERALLY COVARIANT QFT

Three essential principles — for QFT

• Principle of locality

The dynamical laws and (algebraic) relations of the

observables of a QFT on a fixed background spacetime

should be locally determined, without dependence on the

global structure of spacetime.

• Principle of general covariance

The dynamical laws and relations of the observables of a

QFT are equivalent on isometric spacetimes.

• Principle of dynamical determination of spacetime

Spacetime not fixed but determined by Einstein’s equations

— thus there should be QFTs of the “same type” on

all spacetimes [which can occur as solutions to Einstein’s

equations]

N.B. While the relations between the observables are required to

be local (“finite propagation speed”), there are typically nonlocal

correlations at the level of the states → non-local quantum

effects (EPR, Bell-correlations,...)
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Combination of these 3 principles into the

generally covariant locality principle

To each spacetime (M, g), associate a QFT: (M, g) 7→ φ(M,g)

which is of the same type on all spacetimes, i.e.

the observables of the QFT on (M, g) and

the observables of the QFT on (M ′, g′)

should have the same structure (algebraic relations, dynamics,

field content) on isometric subregions.

In other words:A(M, g) = *-algebra of observables generated by φ(M,g)

if (M, g) and (M ′, g′) are isometric on a subregion N , then

there should be an isomorphismA(N, g) α
−→ A(N, g′

)

M    ,    g M   ,   g

N N

      isometric
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Local, generally covariant (functorial) QFT (BFV, 2003)

The mathematical content of the generally covariant locality

principle is best given using the language of categories and

functors. We need two categories:Man :

Objects: four-dimensional, globally hyperbolic spacetimes

(M, g) which are oriented and time-oriented.M = (M, g, ǫabcd, T )

Morphisms: ψ ∈ homMan(M1,M2) if

ψ : M1 → M2

• is an isometric embedding, ψ∗g1 = g2

• preserves orientation and time-orientation

• is causally regular, ie ψ(M1) is a globally hyperbolic sub-

spacetime of M2,

J+M2
(ψ(p)) ∩ J−M2

(ψ(q)) ⊂ ψ(M1) , ∀ p, q ∈ M1Alg :

Objects: ∗-algebras (favorably: C∗-algebras) possessing unit

elements

Morphisms: α ∈ homAlg(A1,A2) if α : A1 → A2 is a linear,

faithful (injective) unit-preserving ∗-homomorphism.

R.Verch 4



A QFT fulfilling the generally covariant locality principle

(shorter: local covariant QFT) is a covariant functor A between

the two categories Man and Alg, i.e., writing αψ for A (ψ), in

typical diagramatic form:M ψ
−→ M′A??y ??yAA (M)
αψ
−−→ A (M′)

Covariance means:

αψ′ ◦ αψ = αψ′◦ψ , αidM = idA (M) ,

M
,

M
,

M
ψ

(    )M
(     )

α ψ
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A loc. cov. QFT A is called causal if the following holds:

if ψ1(M1) and ψ2(M2) are causally separated in M′,

one has
�
αψ1

(A (M1)), αψ2
(A (M2))

�
= {0} ,

,
M

M

M
ψ

ψ

1

2

2

1

A obeys the time-slice axiom if

αψ(A (M)) = A (M′)

when ψ(M) contains a Cauchy-surface for M′:

,
M

,
M

M

(    )M

α ψ

ψ

α(     ) ψ (    )M= ( )
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Example : Define for all M ∈ Obj(Man) the C∗-algebraic

variant of the free scalar field; i.e. (in formal notation) define

WM(f) = eiφM(f) , f ∈ C∞
0 (M, R) ,

then the WM(f) obey the “exponentiated CCR” (Weyl-

relations)

WM(f)WM(h) = e
−iE(f⊗h)

WM(f)WM(h) ,

WM(f)
∗

= WM(−f)

WM(f + (∇µ∇µ +m2)h) = WM(f) .

Then one obtaines a local covariant QFT viaA (M) = C∗-algebra generated by all WM(f)

αψ(WM(f)) = WM′(ψ∗f)

The locally covariant QFT obtained in this way is also

• causal and

• fulfills the time-slice axiom.
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Dynamics

Suppose we have a globally hyperbolic spacetime (M,
◦g) and we

vary the metric
◦g to a metric g in a fixed neighbourhood of a

Cauchy-surface:

go

o

o

,, ggM

g

M

++

− −ψψ

ψψ

N

N
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Assuming that A fulfills the time-slice axiom, we can construct

a C∗-algebra automorphism

βg = α
ψ−◦

◦ α
−1

ψ−g ◦ α
ψ+g ◦ α

−1

ψ+
◦
,

called relative Cauchy-evolution, which results from the

functorial properties of A via the diagram:

, g )( M , g(M )

α α

α α

o

g

(N
o

, g )

g(o N ), g

ψ

− ψ −

ψ +

+

ψ
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Now assume that there is a Hilbert-space reprn (π,H) ofA (M,
◦g) and that the functional derivative

δ

δgµν(x)π(βgB)

can be formed for all B in a dense sub-algebra B ⊂ A (M,
◦g) in

the sense of quadratic forms on a suitable dense domain V ⊂ H.

This quantity should have the significance of an energy-

momentum tensor. In fact:

Theorem

Under these assumptions:

∇µ

δ

δgµν(x)π(βg(B)) = 0 .

For the case A = free scalar field, it holds in the

representations induced by Hadamard states on A (M,
◦g)

that

δ

δgµν(x)βg(W (f)) = −
i

2
[T

µν
(x),W (f)]
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Remarks

(a) Non-existence of invariant states

Let A be a local covariant QFT.

A state is a family ! = {ωM}, where

ωM is a state on A (M) .

A state is called (diff-) invariant if

ωM′ ◦ αψ = ωM
for all ψ : M → M′.

In general, there are no such states!

E.g. for free fields, there exists no invariant state {ωM} so that

the ωM are Hadamard states:

Existence amounts to βg = Identity ⇔ T µν(x) = 0

(b) Tensorial structure and causality (K. Fredenhagen)Man is a tensor category with M1
` M2 = disjoint unionAlg has “natural” structure of tensor category

Causality of a local cavariant QFT A can be expressed as saying

that A is a tensor functor:A (M1
` M2) ≃ A (M1) ⊗ A (M2)
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(c) Local covariant QFT in arbitrary dimensions

(R.V., C.J. Fewster)℄Man = category of all finite-dim (≥ 2) gh spacetimes as objects,

with same morphisms as before

For Σ = (Σ,h) = compact, connected Riemannian manifold,

define a functor on ℄Man:SΣ : (M, g) 7→ (M × Σ, g ⊕ (−h))

σΣ : ψ 7→ ψ × idΣ

Let A : ℄Man → Alg be a loc. cov. QFT functor as before.

We say that it describes the same theory in all dimensions if:

For all Σ there is a natural transformation γ[Σ] between A andA ◦ SΣ: A (M)
γ
[Σ]M−−→ A ◦ SΣ(M)

αψ

??y ??yασΣ◦ψA (M′)
γ
[Σ]M′

−−→ A ◦ SΣ(M′)
and

γ[Σ] ◦ γ[Σ′] = γ[Σ⊕Σ
′]
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II. SPIN AND STATISTICS, PCT

For a quantum field φ on Minkowski spacetime,

Wightman’s axioms imply

• If φ has spin n + 1
2 (n ∈ N 0)

then φ must be Fermionic

(fulfills spacelike anti-commutativity)

• If φ has spin n (n ∈ N 0)

then φ must be Bosonic

(fulfills spacelike commutativity)

• There is an anti-unitary operator Vpct so that

Vpctφ(f)V −1
pct = iκφ(f ◦ PCT )

where PCT : x 7→ −x,

κ depends on spinor degree of φ

Aim: We would like to have similar theorems on curved spacetime

at comparable level of generality,

♯ without specific assumptions on the spacetime (symmetries)

♯ without specific assumptions on the QFT (special models)
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Quantum (spinor) fields

LetM = ((M, g), S(M, g), σ) be a glob. hyp. spacetime with

spin-structure,

ρ a finite-dim. irred. rep- of SL(2, C ) on Vρ,Vρ(M) the corresp. associated vector bundle.

Then

ΦM = (φM,D,H) is called a quantum field on M if:

1) H = Hilbertspace, D ⊂ H dense linear subspace

2) Γ0(Vρ(M)) ∋ f 7→ φM(f) linear,

φM(f) closable operator on D,D invariant under all φM(f)

3) Γ0(Vρ(M)) ∋ f 7→ 〈χ, φM(f)χ′〉

is continuous, ∀ χ, χ′ ∈ D
4) There are cyclic vectors χ ∈ D
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Generally covariant QFT on spacetimes with spin-structure

In the spirit of a functorial description, we need a new category:ManSp: The class of objects is formed by four-dim., globally

hyperbolic spacetimes with spin-structure, each denotedM = ((M, g), S(M, g), σ, ǫabcd, T )

Morphisms are the isometric embeddings preserving the spin-

structure (up to equivalence):

Θ = (Θ, ϑ) is called a local isomorphism between M1 and M2,

denoted M1
Θ

−→ M2 , if:

(a) (M1, g1)
ϑ

−→ (M2, g2) is a morphism of Man
(b) θ lifts to a local spin-structure isomorphism

Θ : S1(M1, g1) → S2(M2, g2)

Note: ϑ preserves the orientation ǫabcd and the time-orientation

T .M is the copy of M with the reversed time-orientation,

T 7→ −T .
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Generally covariant QFT

A generally covariant QFT of spin-reprn. type ρ is a covariant

functor F between ManSp and Alg,M Θ
−→ M′F??y ??yFF (M)
αΘ−−→ F (M′)

where, moreover, there is a family of quantum fields

ΦM on M ∈ Obj(ManSp)
so that each ΦM generates the algebra F (M)

Remark : The F (M) are actually von Neumann algebras, and

the action of αΘ must be interpreted in a sense differing from

the C∗-case before; but the formal structure of the functorial

properties remains.
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Spin-Statistics on manifolds (R.V., 2001)

Theorem

Let F be a generally covariant QFT of spin-reprn. type ρ.

Assume also:

♯ F fulfills the time-slice axiom,

♯ ΦM0
on M0 = Minkowski spacetime fulfills the Wightman

axioms.

(I) Let ρ be half-integer.

Suppose: There is some M ∈ Obj(ManSp) and a pair of

causally separated regions O1, O2 ⊂ M so that for all fj
with suppfj ⊂ Oj,

φM(f1) commutes strongly with φM(f2) .

Then : φM′(f) = cf · 1 ∀ M′ ∈ Obj(ManSp)
(II) Let ρ be integer.

Suppose: There is some M ∈ Obj(ManSp) and for each

pair of causally separated regions O1, O2 ⊂ M a pair of

test-tensors f1, f2, supp fj ⊂ Oj, with φM(fj) 6= 0 and

φM(f1)φM(f2) + φM(f2)φM(f1) = 0 .

Then : φM′(f) = cf · 1 ∀ M′ ∈ Obj(ManSp)
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9) Examples

1. Scalar Klein-Gordon field:

Vρ = R , ρ = D(0,0),

field eqn (∇a∇a +m2)φ = 0 (m ≥ 0)

2. Proca field:

Vρ = R 4, ρ = D(1,1),

field eqn (∗d ∗ d+m2)φ = 0 (m > 0)

3. Majorana-Dirac field:

Vρ = C 4, ρ = D(1,0) ⊕D(0,1),

field eqn (∇/ + im)φ = 0 (m ≥ 0)

In cases 1. and 2., the quantum fields fulfil CCRs in exponentiated

Weyl-form.

In case 3. the quantum fields fulfil CARs.

They are uniquely constructed from the field equations.

In all cases, the fields are represented on Hilbert-space

representations induced by quasifree states fulfilling the microlocal

spectrum condition �SC
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PCT for loc. cov. QFTs admitting OPEs (Hollands, 2004)

OPE at x ∈ M for QFT ΦM on M:

φM(x+ y1) · · ·φM(x+ yn) ≃
X
(N)

c
(N)M,x(y1, . . . , yn)φ

(N)M (x)

≃ is asymptotic equality as yj → 0, valid as expectation values

φ
(N)M (x) are, eg., suitable Wick-powers of φM(x)

Theorem (PCT for OPEs)

Suppose that the ΦM, M ∈ Obj(ManSp), induce a local

covariant QFT,

• all φM admit OPEs,

• the c
(N)M,x are covariant, fulfil an analytic �SC, and depend

analytically on the spacetime metric.

Then

φ
CM(x+y1) · · ·φ

CM(x+yn) ≃
X
(N)

c
(N)M,x(y1, . . . , yn)φ

(N)M C
(x)

with φ
(...)M C(f) = iF (−1)Sφ

(...)M (f)

F = 0/1 if φ
(...)M is bosonic/fermionic

S = number of (proper) spinor indices of φ
(...)M

Asymptotic form of VpctφM(f)V −1
pct = φCM(f)
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III. WICK PRODUCTS AND TIME ORDERED

PRODUCTS

Wick products and time ordered products are needed in the

perturbative construction of interacting QFTs

(Hollands & Wald, 2001-02 ; BFV, 2003)

Wick-square of scalar field can be defined with respect to a

reference state ω:

: ϕ2 :ω (x) = lim
y→x

(ϕ(x)ϕ(y) − ω(ϕ(x)ϕ(y)) )

Problem: This definition is not generally covariant in the sense

that

αψ(: ϕ
2
:ω (x

′
)) = (: ϕ

2
:ω)(ψ(x

′
))

with a suitable algebra-morphism

αψ : W(M′) → W(M)

forW(M) = algebra generated by free field and Wick polynomials

on M (in quasifree representations fulfilling µSC)

But the problem can be solved by suitable re-definition of the

Wick product.
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If ω, ω̃ are two reference states satisfying µSC, then

: ϕ2 :ω (x) − : ϕ2 :ω̃ (x) = Bω,ω̃(x)

with a smooth function Bω,ω̃ satisfying a covariance condition

Bω◦αψ,ω̃◦αψ
= Bω,ω̃ ◦ ψ

and the cocycle condition

Bω1,ω2
+ Bω2,ω3

+ Bω3,ω1
= 0

This cocycle can be trivialized;

For each state ω = ωM′ on A (M′) = C∗-algebra of free scalar

field on M′ there is fωM′ ∈ C∞
0 (M′) with

fω◦αψ = fω ◦ ψ , Bω,ω̃ = fω − fω̃

for ω = ωM′, ω̃ = ω̃M
Then

: ϕ
2
:(M,g) (x) = : ϕ

2
:ωM −fωM(x)

is local and generally covariant in the above sense.

R.Verch 21



This establishes existence of locally covariant Wick products of

the free field on globally hyperbolic spacetimes. On can also

establish the existence of locally covariant time ordered products

(Hollands and Wald, 2001-02)

Making natural additional assumptions on µSC, algebraic

relations, behaviour under scaling, and continuity, Hollands and

Wald have shown that local covariance fixes Wick-products

and time ordered products up to corrections determined by

the local curvature.

E.g. if : ϕk : and +
+ϕ

k+
+, k ∈ N , are two families of Wick

products which are generally covariant and fulfill the additional

assumptions, then

+
+ ϕ

k+
+(x) =: ϕ

k
: (x) +

k−2X
i=0

�
k
i

�
Ck−i(x) : ϕ

k
: (x)

where Ck are polynomials in the metric g, the curvature and its

derivatives up to order k − 2. Ck scales homogeneously in λ of

degree k under rescalings g → λ−2g, m2 → λ2m2.

A similar assertion holds for the case of the time ordered products

(see refs. for details)

Thus, the principle of general covariance is instrumental to

reducing the renormalization ambiguity in QFT on manifolds

to finitely many renormalization constants (in each order of

pert. theory) which can be determined by measurement

(since local curvature can be measured) and scale-fixing.
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Outlook: Generally covariant QFT over non-commutative

spacetimes

Idea: Replace classical spacetimes (M, g) by non-commutative

spacetime geometries and give a similar description of the

principle of local, general covariance.

This means:

Replace (M, g) by (A,D,H) : algebraic data of a

non-commutative geometry (Connes)

This suggests to consider generally covariant QFT over non-

commutative spacetimes as a general framework for a theory

of quantum gravity (Paschke and Verch, 2004).

)
B’

B’,D’  ,H’
B’

( )A’,D’,H’()A,D,H(

vwvw = οααoα

wα

w
)

AΦA )A’,D’,H’()
B’

B’,D’  ,H’
B’

(

ΦA ΦA

Φ

B
B,D  ,H

B
(

ΦA )A,D,H(
ΦA )

B
B,D  ,H

B
(

Requires Lorentzian noncommutative geometry, i.e. a

generalization of the concept of a spectral triple (A,D,H) to

“non-commutative globally hyperbolic spacetimes”.

This is work in progress...

→ see talk by Mario Paschke this afternoon
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