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ABOUT LOOP QUANTIZATION

Classical Theory

kinematics, dynamics
LQ -

Quantum Theory

kinematics, dynamics

Types of theories:

• background metric independent or
background metric dependent

• gauge or sigma modles or scalar field

ABOUT THIS WORK

• Contributes to dynamical aspects of LQ

• Applies to all types of theories

• Brings all of LGT (metric dependent) to LQ
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ORGANIZATION

1. General framework

2. Explicit example: 2d Ising field theory

(see Elisa Manrique’s poster for details)

3. Discussion
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1. GENERAL FRAMEWORK

We work on the Euclidean description of QFT

(Direct Hamiltonian treatment also possible)

Implementation of Wilson’s RG

Effective theos (scale C) Fundamental theo (M)

{(AC, µC)}
Ccelldec(M) −→ (ĀM , µM)
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Example of cellular decomposition:

R2 = ∪αcα, cα ∩ cβ = if α 6= β
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Structure: Directed partial order (≤)
Consequence: the limit C →M makes sense
(and if it exists it is unique)

Example of continuum limit:
f : Cell decs(M)→ R

lim
C→M

f(C) = f(M)

means that

∀ ε ≥ 0 ∃C0 :

|f(C)− f(M)| ≤ ε ∀C ≥ C0
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ĀM space of “loopy” Euclidean histories

(G-sigma models here)

s ∈ ĀM ⇐⇒ s(p) ∈ G for all p ∈M

AC space of effective Euclidean histories

(C-constant histories)

s ∈ AC ⊂ ĀM ⇐⇒
s(p) = s(q)⇐ there is cα ∈ C with p, q ∈ cα

Inclusion AC → ĀM
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Meaning of the continuum limit

lim
C→M

(AC, µC) = (ĀM , µM)

means that

• EventuallyIn(AC) is dense in ĀM

• Given any f ∈ Cyl(ĀM) the continuum limit

measure acts as

µM(f)
.
= lim

C→M
µC(i?Cf)

Notice that the construction holds also for

(smaller) more economic families of cell decs.;

e.g. regular cell decs.
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Constructing the measures µC: renormaliza-

tion prescriptions

C1 ≤ C2

(AC1
, µC1

)

iC1C2−→
←−

πC2C1

(AC2
, µC2

)

(π
C2C1

is a coarse graining map. See Elisa’s poster for an

explanation)

Since they are two effective descriptions of the

same system

πC2C1?µC2
≈ µC1
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• Strong (stupid) renorm. presc.

(All C1 obs. equally measured at C2)

• Weak (inteligent) renorm. presc.

(Some C1 obs. equally measured at C2)

If µCi
= µ(βCi

) ⇒ βCi+1
= βCi+1

(βCi
)

If iterable ⇒ RG flow (direction C →M)

Can the approx. πCi+1Ci?
µCi+1

≈ µCi
improve

as Ci →M?

Yes, if there is critical phenomena at the fixed

point limC→M βC = βM = βcritical
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2. EXPLICIT EXAMPLE: 2D ISING QFT
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i j

µβC
←→ n-point functions

µβC
(sp1·...·spn) =

1

ZC

∑
s

sp1...spn

M(βC)n
exp [−βC

∑
(ij)

sisj]

Theorem 1 (McCoy, Tracy, Wu) Choose βC

as to maintain the physical correlation length
constant. Then

lim
C→R2

µβC
(sp1 · ... · spn) = µR2(sp1 · ... · spn)

The limit exists and it is explicitly given in
terms of special functions (Elisa’s poster).

Thus, we have constructed a non trivial
Euclidean QFT on ĀM.
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3. DISCUSSION

1. Introduced background structure. What

about symmetries (rotational if metric, diff

if metric independent)?

2. What about a Hamiltonian (real time) for-

mulation?

3. What about importing numerical work from

LGT?

4. Can we apply this form of LQ to

General Relativity?

10


