Taming the cosmological constant in 2D causal quantum gravity with topology change

Talk prepared for the Loops '05 Conference Potsdam, Oct. 2005

Stefan Zohren

Universiteit Utrecht

related work: [hep-th/0507012] R. Loll, W. Westra, S. Z.

Empty space and the need for quantum gravity

Path integral formulation: Quantum mechanics

Continuum limit \rightsquigarrow **quantum mechanics**

$$\xrightarrow{a \to 0} \int \mathcal{D}x e^{iS[x]}$$

Path integral formulation: Dynamical triangulations (DT)

Continuum limit \rightsquigarrow **quantum gravity**

$$\xrightarrow{a \to 0} \int \mathcal{D}[g_{\mu\nu}] e^{iS^{\text{Einstein}}[g_{\mu\nu}]}$$

From dynamical triangulations to causal dynamical triangulations

Features of DT:

- nonperturbative
- background independent
- no new symmetries
 - (unlike string theory)

Problems:

need convergence of PI \rightsquigarrow Wick rotation

Way around: Euclidean formulation (DT) treats time like all other coordinates → no light-cones, no causality

New idea: Causal dynamical triangulations (CDT):

- take Lorentzian structure seriously
- Minkowskian building blocks
- exists well-defined Wick rotation

Recent results in d=4:

- PI well behaved
- at large scales dynamically generated 4-dim. universe [hep-th/0411152]
- at short scales dynamical reduction to two dimensions [hep-th/0505113]

Problem:

super-exponential growth in the number of configurations

Solution:

Use causal structure to exclude "bad" topology changes (which lead to macroscopic causality violations) from the PI.

Only allow for "untwisted" wormholes of infinitesimal duration.

Implementation of wormholes

Continuum and double scaling limit

Scaling relations:

$$\begin{aligned} x &= 1 - aX + \mathcal{O}(a^2) \\ y &= 1 - aY + \mathcal{O}(a^2) \\ g &= \frac{1}{2}(1 - a^2 \Lambda) + \mathcal{O}(a^3) \\ h^2 &= \frac{1}{2}h_{ren}^2 \Lambda \left(X + Y\right) a^3, \quad h_{ren} = e^{-2\pi/G_N} \end{aligned}$$

Loop-loop correlator:

$$G_{\Lambda,G_N}(L_1,L_2;T) = \frac{\omega}{\sqrt{L_1L_2}} \frac{e^{-\omega(L_1+L_2)\coth(\omega T)}}{\sinh(\omega T)} I_1\left(\frac{2\omega\sqrt{L_1L_2}}{\sinh(\omega T)}\right), \quad \omega = \sqrt{2\Lambda(1-h_{ren}^2)}$$

Calculate further dynamical quantities and observables.

Observables and how to tame the cosmological constant

Summary and Outlook:

- CDT leads to a well defined continuum theory of quantum gravity in 2D
- Therefore no need for a fundamental discrete length scale!
- Sum over topologies can explicitly be performed in the background independent framework of CDT
- Presence of wormholes is accompanied by a decrease in the effective cosmological constant

Causal dynamical triangulations recently gave interesting results in d=4 It is a promising candidate for a theory of quantum gravity